The evolution of genetics to genomics

Autores

  • Alan T. Branco Harvard T. H. Chan School of Public Health. Department of Environmental Health Molecular and Integrative Physiology Program

DOI:

https://doi.org/10.7322/jhgd.113710

Palavras-chave:

development. mathematical models, Genetics, Genomics.

Resumo

Development of civilizations and the technology of Development improvement of crop and animals have been under human control for more than 10.000 years. Despite the term Genetics started being employed a few centuries ago, its practice is ancient and responsible for thriving of the human society to the point we see now. The recent advances in this fi eld started with the theories of evolution, mathematical models to predict traits, and studies at cellular level. The explosion of knowledge on the last few decades associated with the advancing of internet and computers led to advent of a new discipline in genetics: genomics. Here is discussed the transition from genetics to genomics and some of the main factors that were responsible for this progress. Nowadays genomics is part of most of life science studies and the outcomes are leading to outstanding discoveries on how the genome is precisely concerted; the fi ndings have been crucial to understand human illness and for development of personalized and more precise medical treatment.

Referências

Inomata T, MacLellana J, Triadana D, Munsonb J, Burhama M, Aoyamac K, et al. Development of sedentary communities in the Maya lowlands: coexisting mobile groups and public ceremonies at Ceibal, Guatemala. Proc Natl Acad Sci USA. 2015;112(14):4268-73. DOI: http://dx.doi.org/10.1073/pnas.1501212112

Darwin CR. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murray; 1859.

Hillman G, Hedges R, Moore A, Colledge S, Pettitt P. New evidence of Lateglacial cereal cultivation at Abu Hureyra on the Euphrates. Holocene. 2001;11(4): 383-93. DOI: http://dx.doi.org/10.1191/095968301678302823

Allard RW. History of plant population genetics. Annu Rev Genet. 1999;33:1-27. DOI: http://dx.doi.org/10.1146/annurev.genet.33.1.1

Cooke R. Prehistory of Native Americans on the Central American Land Bridge: Colonization, Dispersal,and Divergence, J Archaeological Res. 2005;13(2):129-87. DOI: http://dx.doi.org/10.1007/s10804-005-2486-4

Miko I. Gregor Mendel and the principles of inheritance. Nature Education. 2008;1(1):134.

Sutton WS. On the morphology of the chromosome group in Brachystola magna. Biol Bull. 1902;4(1):24-39.

Griffi th F. The signifi cance of pneumococcal types. J Hyg (Lond). 1928;27(2):113-59.

Hershey AD, Chase M. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol. 1952;36(1):39-56.

Watson JD, Crick FHC. A structure for deoxyribose nucleic acid. Nature. 1953;171(4356):737-8.

Meselson M, Stahl FW. The replication of DNA in Escherichia coli. Proc Natl Acad Sci USA. 1958;44(7): 671-82.

Shapiro J, Machattie L, Eron L, Ihler G, Ippen K, Beckwith J. Isolation of pure lac operon DNA. Nature. 1969;224(5221):768-74.

Jackson DA, Symons RH, Berg P. Biochemical method for inserting new genetic information into DNA of simian virus 40 - circular SV40 DNA molecules containing lambda phage genes and galactose operon of escherichia-coli. Proc Natl Acad Sci USA. 1972;69(10):2904-9.

Baltimore D. RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature. 1970;226(5252):1209-11. DOI: http://dx.doi.org/10.1038/2261209a0

Temin HM, Mizutani S. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature. 1970;226(5252):1211-13. DOI: http://dx.doi.org/10.1038/2261211a0

Lehman IR, Bessman MJ, Simms ES, Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. I. Preparation of substrates and partial purifi cation of an enzyme from Escherichia coli. J Biol Chem. 1958; 233(1): 163-70.

Klenow H, Henningsen I. Selective elimination of the exonuclease activity of the deoxyribonucleic acid polymerase from escherichia coli b by limited proteolysis. Proc Natl Acad Sci USA. 1970;65:168-75.

Chien A, Edgar DB, Trela JM. Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol. 1976;174:1550-7.

Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 1977;74(12)5463-7.

Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, et al. Nucleotide sequence of bacteriophage phi X174 DNA. Nature. 265(5596):687-95. DOI: http://dx.doi.org/10.1038/265687a0

International Human Genome Sequencing Consortium; Lander ES, Linton ML, Birren B, Nusbaum C, Zody MC, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860-921. DOI: http://dx.doi.org/10.1038/35057062

International Human Genome Sequencing Consortium Finishing the euchromatic sequence of the human genome. Nature. 2004;431:931-945. DOI: http://dx.doi.org/10.1038/nature03001

Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl.Acad Sci USA. 2009;106(23):9362-7. DOI: http://dx.doi.org/10.1073/pnas.0903103106

Cooper GM, Shendure J. Needles in stacks of needles: fi nding disease-causal variants in a wealth of genomic data. Nat Rev Genet. 2011;12:628-40. DOI: http://dx.doi.org/10.1038/nrg3046

Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337(6099):1190-5. DOI: http://dx.doi.org/10.1126/science.1222794

Hou L, Zhao H. A review of post-GWAS prioritization approaches. Front Genet. 2013;4:280. DOI: http://dx.doi.org/10.3389/fgene.2013.00280

The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57-74. DOI: http://dx.doi.org/10.1038/nature11247

Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science. 2001;294(5543):862-4. DOI: http://dx.doi.org/10.1126/science.1065329

Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem., 2012;81:145-66. DOI: http://dx.doi.org/10.1146/annurev-biochem-051410-092902

Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326(5950):289-93. DOI:http://dx.doi.org/10.1126/science.1181369

Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213). DOI: http://dx.doi.org/10.1126/science.1258096

Cox DB, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges. Nat Med. 2015;21(2):121-31. DOI: http://dx.doi.org/10.1038/nm.3793

Meyer M, Kircher M, Gansauge MT, Li H, Racimo F, Mallick S, et al. A high-coverage genome sequence from an archaic Denisovan individual. Science. 2012; 338(6104):222-6. DOI: http://dx.doi.org/10.1126/science. 1224344

Prüfer K, Racimo F, Patterson N, Jay F, Sankararaman S, Sawyer S, et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature. 2014;505(7481):43-9. DOI: http://dx.doi.org/10.1038/nature12886

Reich D, Green RE, Kircher M, Krause J, Patterson N, Durand EY, et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature. 2010;468:1053-60. DOI: http://dx.doi.org/10.1038/nature09710

Vattathil S, Akey JM. Small Amounts of Archaic Admixture Provide Big Insights into Human History. Cell. 2015;163(2):281-4. DOI: http://dx.doi.org/10.1016/j.cell.2015.09.042

Publicado

2016-04-28

Edição

Seção

Artigos Originais