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ABSTRACT: The chemical composition of corn is variable and the knowledge of its chemical 
and energetic composition is required for an accurate formulation of the diet. This study aimed 
to determine the chemical composition, that is, dry matter (DM), mineral matter (MM), neutral 
detergent fiber (NDF), acid detergent fiber (ADF), ether extract (EE), crude protein (CP), gross 
energy (GE) and energetic values of different varieties (batches) of corn and validate mathemat-
ical models to predict the metabolizable energy values (ME) of corn for pigs using near infrared 
spectroscopy (NIRS). Corn samples were scanned in the spectrum range between 1,100 and 
2,500 nm, the model parameters were estimated by the modified partial least squares (MPLS) 
method. Ten prediction equations were inserted into the NIRS and used to estimate the ME 
values. The first degree linear regression models of the estimated ME values in function of the 
observed ME values were adjusted. The existence of a linear ratio was evaluated by detecting 
the significance to posterior estimates of the straight line parameters. The values of digestible 
energy and ME ranged from 3,400 to 3,752 and 3,244 to 3,611 kcal kg–1, respectively. The 
prediction equations, ME1 = 4334 – 8.1MM + 4.1EE – 3.7NDF; ME2 = 4,194 – 9.2MM + 1.0CP 
+ 4.1EE – 3.5NDF; and ME7 = 16.13 – 9.5NDF + 16EE + (23CP × NDF) – (138MM × NDF) were 
the most adequate to predict the ME values of corn by using NIRS.
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Introduction

Although corn (Zea mays L.) is considered food of 
well-defined chemical composition, with average values 
provided in food composition tables, factors such as soil 
fertility, genetic variety of cultivars, planting conditions, 
storage and processing can significantly alter the chem-
ical composition of corn (Li et al., 2014). Determining 
nutrient composition of corn generally requires differ-
ent procedures for each nutrient. In addition, energy 
value of feed ingredients is evaluated mainly through 
traditional digestion-metabolism experiments, which are 
labor intensive, time consuming and expensive, which 
may impair its use in the feed industry (Li et al., 2016).

Thus, other methods have attempted to determine 
the chemical composition and energetic value of corn, 
such as the near infrared spectroscopy (NIRS) technol-
ogy, which is rapid, non-destructive and analyzes more 
than one component at the same time, avoiding the use 
of chemical reagents and producing no waste (Swart et 
al., 2012). Some studies have also indicated that NIRS is 
useful to predict the nutritive and energetic content of 
feed ingredients and diets for poultry (Valdes and Lee-
son, 1992, 1994), rabbits (Xiccato et al., 1999, 2003) and 
even swine (Aufrère et al., 1996; Van Barneveld et al., 
1999). However, to the best of our knowledge there is 
just one report (Li et al., 2016) on the rapid prediction of 
DE and ME content in corn by NIRS in pigs.

NIRS, in conjunction with prediction equations to 
estimate the energy value of feed ingredients, is already 
used by some feed industries; however, the results need 

validation, because they consider the prediction errors of 
estimates of chemical composition and ME, not only the 
prediction error of the adjusted models to estimate ME 
of feed ingredients. This study was conducted to deter-
mine the chemical composition and energetic values of 
different corn varieties and validate mathematical models 
to predict the ME values of corn for pigs by using NIRS.

Materials and Methods

Samples preparation and laboratorial chemical 
analysis

Ninety-nine corn samples of different varieties 
and from different municipalities [Ângulo (23°12'52" 
S, 51°56'6" W, 300 m above sea level); Apucarana 
(23°31'30" S, 51°24'20" W, 988 m above sea level); 
Arapongas (23°25'8" S, 51°25'26" W, 816 m above sea 
level); Atalaia (23°10'05" S, 52°03'10" W, 630 m above 
sea level); Califórnia (23°39'00" S; 51°21'18" W, 800 m 
above sea level); Foz do Iguaçu (25°32'45" S, 54°35'07" 
W; 192 m above sea level); Maringá (23°25'31" S, 
51°56'19" W, 555 m above sea level)] of Paraná State, 
Brazil, were ground through a 1 mm screen and stored 
in plastic pots, prior chemical analysis. The samples 
were analyzed using the methods of AOAC International 
(AOAC, 1990, 2002) for dry matter (DM; AOAC method 
934.01), mineral matter (MM; AOAC method 942.05), 
neutral detergent fiber (NDF; AOAC method 2002:04, 
2002), acid detergent fiber (ADF; AOAC method 973.18), 
ether extract (EE; AOAC method 920.39) and crude pro-
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tein (CP; AOAC method 954.01). Eighty samples were 
chosen randomly as a calibration set and nine samples 
were used for external validation. The remaining ten 
samples were used in the metabolism assay. Corn, diets, 
and excreta were analyzed for gross energy (GE, kcal 
kg–1) using a bomb calorimeter.

NIRS spectra collection
Spectral measurements were performed using a 

FOSS XDS rapid content with the spectrometer search 
grid in the full spectrum 400-2500 nm. Spectral data col-
lection, processing and calibration were conducted with 
the software WinISI III. Raw (log (1/R)) data were cor-
rected for the scatter effects using the standard normal 
variance (SNV) and detrend (DT) combined with a math-
ematical treatment (2, 4, 4, 1) to derive the NIRS spec-
trum. The first number indicates the order of derivative 
function, the second is the gap, the third represents the 
number of data points used in the first smoothing, and 
the fourth is the number of data points in the second 
smoothing, which is normally set at 1 for no second 
smoothing (Li et al., 2016).

Calibration and validation process
The selection of the spectra / sample that best rep-

resented the data set and the separation of samples that 
showed large differences compared to the other calibra-
tion set of samples were analyzed by the principal com-
ponent analysis (PCA). A standardized H static (GH = 3) 
and Neighborhood H (NH = 0) were adopted to detect 
outliers.

The regression model parameters were estimated 
by the modified partial least squares (MPLS) regression 
method. The calibration model was developed by regres-
sion of absorption spectra of standard samples (n = 80) 
and their respective values of DM, CP, EE, GE, ADF, 
NDF and MM, which were obtained by conventional 
laboratory analyses.

The calibration model was evaluated by cross-val-
idation (made by NIRS) and through an external vali-
dation using the validation set (n = 9). The results of 
corn chemical composition, obtained from the conven-
tional laboratory analyses and NIRS technology, were 
compared in a paired manner (observed and predicted 
values) using the Bayesian approach. The differences in 
the results of each pair of samples were written as DIF 
= y2 – y1, providing a sample of differences, normally 
distributed such as: 

Difi ~ N(μ, τ)

with i = 1, 2, ..., n, considering for μ (average) and τ 
(precision), noninformative prior distributions, such that 
μ ~ N(0,10–6) and τ ~ Gama (10–3,10–3) with variance 
σ2 = 1/τ, according to the OpenBUGS parameterization 
computer program that simulates the chains of param-
eters through the Monte Carlo Markov Chain (MCMC) 
method.

To evaluate the existence (or absence) of the cor-
relation between values obtained by NIRS and by the 
conventional laboratory analyses, we used a Bayesian 
model, assuming that the response Y has the character-
istics of a bivariate normal distribution, that is:
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where: μY1 and μY2 correspond to Y1 and Y2 respons-
es, respectively, and NIRS / predicted and Laboratory 
/ observed for each composition parameter. Similarly, 
σ11

2  and σ22
2  represent their respective variances, and σ12 

= σ21, the covariance between Y1 and Y2. For bivariate 
model parameters, a noninformative prior distribution 
was considered μ(.) ~ N (0, 10–6) and a precision matrix 
Ω ~ W was deduced, where W is a Wishart distribution 
with matrix (co) variance given by Σ = Ω–1. The correla-
tion ρ was given by σ σ σ12 11 22/ , according OpenBUGS 
parameterization (Rossi et al., 2014).

In both models, posterior distributions were ob-
tained through the Brugs package program R (R Develop-
ment Core Team, 2014). Fifty thousand values were gen-
erated through the MCMC method, with a discharge of 
1,000 initial values in jumps of size 1. The convergence of 
the chains was tested by the coda package R program ac-
cording to the criterion of Heidelberger and Welch (1983).

The average posterior estimates were used for 
each composition parameter and a credibility interval 
was calculated for the average difference, where signifi-
cance was observed in the parameters in which the val-
ue zero did not belong to the range of 95 % of credibility.

	
Metabolism assay

The metabolism assay was carried out in Maringá, 
Paraná, Brazil (23°21' S, 52°04' W, altitude 564 m). All 
experimental procedures were previously submitted to 
the Ethics Committee on Animal use in trial (CEUA n° 
8329240815). Forty-four crossbred barrows with aver-
age initial weights of 25.05 ± 2.01 kg were distributed 
in a randomized block design with ten treatments plus 
the reference diet and four replicates per treatment. 
Corn cultivars replaced 25 % of the reference diet. The 
chemical composition of ten corn cultivars used in the 
metabolism assay was determined by the conventional 
laboratory analyses and the NIRS technology, using the 
previously developed calibration model.

The experimental period lasted 12 days, seven 
days for animal adaptation to metabolism cages and feed 
and five days of feces and urine collection, which were 
performed once a day, at 08h00. The beginning and the 
end of the collection period was determined using 2 % 
iron oxide (Fe2O3) as a fecal marker.

The reference diet was formulated based on corn, 
soybean meal, soybean oil, vitamins, minerals, amino 
acids and additives to meet, at minimum, the nutri-
tional requirements proposed by the National Research 
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Council (2012). The ration provided daily was calculated 
based on metabolic weight (kg0.75) of each animal and 
on the average consumption recorded in the adaptation 
period. The diets were moistened with water, at approxi-
mately 30 % of the feed, and fed twice a day (07h30 and 
15h00).

The digestible energy (DE), ME, digestibility coef-
ficients of GE (DCGE), metabolizability coefficients of 
GE (MCGE), and ME: DE ratio were determined. The 
analysis of variance (ANOVA) was performed using 
PROC ANOVA using SAS (Statistical Analysis System, 
version 8.1), and the DCGE and MCGE were analyzed 
using the Student Newman Keuls test.

To estimate the ME values, ten equations were 
included in NIRS (Table 1). A database containing the 
observed metabolizable energy values (OME) and the es-
timated metabolizable energy values (EMElab and EME-
nirs) were tabulated. The OME data were obtained in 
the metabolism assay, while the EMElab data were ob-
tained from replacing the chemical composition of corn 
obtained by the conventional analyses (LAB) in the pre-
diction equation. The EMEnirs data were obtained from 
reading the corn samples in NIRS, using the calibration 
model developed to predict the chemical composition of 
values associated with the prediction equations selected 
in the literature and inserted into NIRS.

The validation of prediction equations was ini-
tially assessed with the adjustment of linear regression 
models of the first degree of estimated metabolizable en-
ergy values (EMEnirs and EMElab) due to the observed 
metabolizable energy values (OME), following a Bayes-
ian approach assuming that:

Yi~N(μ,τ) such that μ = β0 + β1Xi

where: Y is the EMEnirs and EMElab and X is OME. 
For parameters β0, β1 and τ (precision), a noninforma-
tive prior distribution and independent were assumed, 
respectively, β0 ~ N(0, 10–6), β1 ~ N(0, 10–6) and τ ~ 
Gama(10–3,10–3) with variance σ2 = 1/τ, according to 
OpenBUGS parameterization. 

Posterior distributions were obtained through the 
BRugs package from program R (R Development Core 

Team, 2014), where one million values were generated 
in a MCMC process with a discharge of 100,000 initial 
values in jumps of size 1. The convergence of the chains 
was tested by the convergence diagnostics and output 
analysis (CODA) package R program, following the cri-
terion of Heidelberger and Welch (1983).

The null hypothesis H0: βi = 0 was tested against 
the bilateral alternative hypothesis Ha: βi ≠ 0 for each 
parameter individually. The linear relationship between 
estimated and observed values ​​was evaluated by detect-
ing the significance of estimated a posterior parameter 
β0 and β1, recorded where the null (zero) did not belong 
to the 95 % credible intervals for each parameter. The 
absence of significance for the angular coefficient (β1) of 
the model indicated no linear relationship between EME 
and OME. 

The regression models adjusted for each equation 
were subjected to a comparison test intercept (β0) and 
the angular coefficient (β1) to verify whether the gen-
erated regression models were similar for the different 
methods of analysis. In this case, the null hypothesis H0: 
βinirs = βilab was tested against the two-sided alterna-
tive hypothesis Ha: βinirs ≠ βilab, i = 0.1, for β0 and β1 in-
dividually. In cases where the null (zero) did not belong 
to the 95 % credible interval for the difference between 
the respective coefficients of each model, the adjusted 
models were considered distinct.

Results and Discussion

Calibration and cross-validation
The calibration and cross-validation statistics are 

shown in Table 2. In the calibration set, the highest coef-
ficients of determination were obtained for DM (R2 = 
0.99), CP (R2 = 0.94), GE (R2 = 0.86) and EE (R2 = 0.83), 
with values for the standard error of cross-validation 
(SECV) of 0.39, 0.39, 19.62 and 0.24, for each parameter, 
respectively. The coefficient of determination indicates 
how much of the variation in the data is explained by the 
adjusted model; however, R2 should not be considered in 
isolation, as it is generally applicable to the dataset from 
which it was generated and is not a good parameter for 
independent data sets (Shenk et al., 2007).

Table 1 – Prediction equations used to estimate ME of corn with NIRS.
Item1 Equation (R2)2

ME1 (Noblet and Perez, 1993) 4,334 – 8.1MM + 4.1EE – 3.7NDF 0.91
ME2 (Noblet and Perez, 1993) 4,194 – 9.2MM + 1.0CP + 4.1EE – 3.5NDF 0.92
ME3 (Noblet and Perez, 1993) 1099 + 0.740GE – 5.5MM – 3.7NDF 0.91
ME4 (Ferreira et al., 1997) 3221.47 + 60.91CP – 29.04MM 0.86
ME5 (Li et al., 2014) 4,464.24 + 20.15EE – 17.84NDF – 233.72MM 0.44
ME6 (Li et al., 2014) 4,289.74 + 20.02CP + 22.47EE – 18.40NDF – 245.20MM 0.49
ME7 (Morgan et al., 1987) 16.13 – 9.5NDF + 16EE + (23CP × NDF) – (138MM × NDF) 0.39
ME8 (Morgan et al., 1987) 17.50 – 15.3NDF + 16EE + 5.9CP – 34MM 0.40
ME9 (Morgan et al., 1987) 18.47 – 21NDF + 16EE + (30CP × NDF) – 32MM 0.40
ME10 (Morgan et al., 1987) 5.42 – 17.2NDF – 19.4MM + 0.709GE 0.43
1Suffix (MEX) corresponds to the number of equations; 2Coefficient of determination.
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All GH values were below the limit (GH < 3) indi-
cated by Shenk et al. (2007), showing good accuracy of 
the adjusted models, because the higher the GH value, 
the lower the accuracy of the adjusted model. The pa-
rameters that showed the best results for the standard 
error of performance (SEP) were DM, EE, CP and MM; 
however, the coefficient of determination for the MM 
was low (R2 = 0.30).

External validation
The paired test showed differences between the 

methods of analysis used (NIRS and LAB) for DM, MM 
and ADF (Table 3). For CP, NDF and EE, although there 
was no difference (p > 0.05) between the methods of 
analysis, the correlation between the methods was low, 
with values of 0.29, 0.14 and 0.27, respectively. Among 
all parameters, the DM showed the highest correlation (ρ) 
between the LAB values and NIRS results, showing good 
precision of the fitted model for this parameter. The worst 
correlations were observed for MM, ADF and GE.

The difference observed for MM can be related to 
the low specificity of the NIRS technology to predict the 
mineral content of food or ingredients. As NIRS relies on 
how infrared light is absorbed by organic compounds (Age-
let et al., 2012), theoretically, there are no absorption bands 
for minerals in the near infrared region (Clark et al., 1987; 
Shenk et al., 2007). Minerals forming organic complexes or 
chelates may be detected, but there are no spectral match-
es for minerals in the ionic or salt form (Shenk et al., 2007).

Regarding the NDF and ADF, the difference between 
the methods of analysis and the low correlation between 
the LAB and NIRS results can be attributed to the diffi-
culty of accurately determining the different fractions that 
comprise the fiber content of foods, which influences the 
reference values and consequently the predictive power of 
the fitted curve. 

Metabolism assay
The corn cultivars used in the metabolism assay 

showed DM values ranging from 86.57 % to 89.71 % 

(Table 4). Mineral matter contents ranged from 0.90 % 
to 1.32 %, corroborating the findings of Pasquetti et al. 
(2015). The EE values varied from 3.32 % to 3.61 %, 
near the average (3.65 %) proposed by Rostagno et al. 
(2011) and also consistent with the value (3.48 %) dis-
played in the NRC (2012).

The CP contents found in this study resemble the 
average (7.88 %) proposed by Rostagno et al. (2011) and 
are similar to those found by Pasquetti et al. (2015). The 
ADF values were greater than 3.00 %, reaching 4.27 
%. These figures contrast with those found by Kil et al. 
(2014), who assessed the digestibility of CP and amino 
acids in corn of different origins for pigs and obtained 
mostly values below 3.00 %. 

The NDF had values between 9.66 % and 12.23 
%, with the maximum value close to the value (11.93 %) 
submitted by Rostagno et al. (2011) and the lowest value 
similar to the default value (9.11 %) by the NRC (2012). 
This variation observed in the chemical and nutritional 
composition of corn may be related to soil fertility, the 
genetic variety of cultivars, planting conditions, anti-nu-
tritional factors, storage and processing (Li et al., 2014).

The digestibility coefficients of GE (Table 5) ranged 
from 85.68 % to 95.66 %, with an average of 90.72 %, 
which is higher than the average of 88 % indicated by 
Rostagno et al. (2011) and the NRC (2012). Cultivar 7 

Table 3 – Bayesian estimates for bromatological corn composition 
analyzed by reflectance spectroscopy in the near infrared (NIRS) 
and physico-chemical method (LAB).

Parameters Method Average1 Standard
deviation Median

ICr 95 %2

2.5 % 97.5 %

DM
NIRS 89.50b 0.77 89.50 87.97 91.02
LAB 90.16a 0.91 90.16 88.36 91.97
ρ3 0.92 0.06 0.94 0.78 0.98

MM
NIRS 1.22a 0.13 1.22 0.97 1.48
LAB 1.13b 0.14 1.13 0.86 1.41
ρ 0.05 0.32 0.06 -0.57 0.65

NDF
NIRS 12.00a 0.16 12.00 11.70 12.32
LAB 12.21a 0.35 12.21 11.52 12.91
ρ 0.14 0.31 0.15 -0.50 0.70

ADF
NIRS 3.91a 0.14 3.91 3.64 4.18
LAB 3.61b 0.17 3.61 3.28 3.95
ρ -0.07 0.32 -0.08 -0.65 0.56

EE
NIRS 3.82a 0.15 3.82 3.53 4.12
LAB 3.77a 0.18 3.77 3.42 4.12
ρ 0.27 0.30 0.30 -3.77 0.77

CP
NIRS 8.61a 0.16 8.61 8.29 8.94
LAB 8.97a 0.27 8.98 8.44 9.53
ρ 0.29 0.29 0.32 -0.36 0.78

GE
NIRS 4,464.13a 5.76 4,464.13 4,452.65 4,475.63
LAB 4,479.68a 18.39 4,479.86 4,442.73 4,515.97
ρ -0.05 0.32 -0.06 -0.64 0.57

DM = Dry matter; MM = Mineral matter; NDF = Neutral detergent fiber; 
ADF = Acid detergent fiber; EE = Ether extract; CP = Crude protein; GE = 
Gross energy. 1Different letters in the columns indicate significant differences 
between the analysis methods through Bayesian comparisons; 2ICr = 
Credibility interval (p ≤ 0.05); 3ρ = Correlation.

Table 2 – Results for the prediction equation in the set of calibration 
samples.

Variable n Average SEC R2 SECV 1-VR RPD SEP Bias GH
DM 73 90.30 0.18 0.99 0.39 0.98 6.93 0.33 0.055 0.986
MM 74 1.21 0.11 0.30 0.12 0.17 1.39 0.16 0.024 1.000
NDF 74 12.05 0.79 0.15 0.84 0.02 1.29 0.81 0.030 1.004
ADF 76 3.97 0.39 0.40 0.52 -0.05 1.04 0.43 0.034 1.000
EE 73 3.96 0.17 0.83 0.24 0.66 3.23 0.21 0.010 1.003
CP 74 9.02 0.16 0.94 0.39 0.64 1.12 0.21 0.017 0.988
GE 74 4,476 12.85 0.86 19.62 0.69 1.84 14.06 -0.763 0.977
DM = Dry matter; MM = Mineral matter; CP = Crude protein; EE = Ether 
extract; NDF = Neutral detergent fiber; ADF = Acid detergent fiber; GE = 
Gross energy; SEC = Standard error of the calibration set; R2 = Coefficient 
determination for the calibration set; SECV = Standard error of the cross-
validation; 1-VR = Coefficient determination for the cross-validation; RPD = 
SD/SECV; SEP = Ratio of the standard deviation to the standard error for the 
cross-validation; Bias = Mean reference value minus the mean predicted value; 
GH = Global distance Mahalanobis.
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showed higher DCGE (p ≤ 0.05) compared to Cultivars 
10 and 5 that had higher NDF contents compared to 
other cultivars (except Corns 6 and 8), which may have 
contributed to the lower DCGE and GE (Le Goff and 
Noblet, 2001; Noblet and van Milgen, 2004).

The average ME value was 3,434 kcal kg–1, rang-
ing from 3,244 to 3,611 kcal kg–1, similar to the aver-
age value of 3,430 kcal kg–1 found by Li et al. (2014), 
who evaluated different cultivars of corn for growing 
pigs. ME variation is a reflection of the different chemi-
cal compositions of the evaluated values ​​found for corn, 
since the ME and chemical composition of the feed are 
directly correlated and can be predicted directly from 
nutrient composition (NRC, 2012).

Although the DCGE and MCGE are higher than 
the values reported in the literature, the ratio ME:DE 
remained close to the calculated values ​​(0.96) using the 
data presented by Rostagno et al. (2011) and reflected the 
value (0.98) suggested by the NRC (2012). Even with the 
higher CP content, Cultivar 1 had the lowest ME:DE ra-
tio (0.94) because, according to Noblet and Perez (1993), 
the ratio ME:DE is linearly (inversely) related to the CP 
content of the diet, which was observed in this study.

Among all evaluated prediction equations, six had 
significance (p ≤ 0.05) for both coefficients (β0 ≠ 0 and 
β1 ≠ 0) and the set straight (ME1, ME2, ME3, ME5, ME7 
and ME10). Thus, the observed metabolizable energy val-
ues explained the estimated values for these equations 
(Table 6). 

The equations ME1, ME2 and ME7 (Table 1) were 
effective in predicting ME values only when associated 
with NIRS technology. The equations ME3, ME5 and 
ME10 were effective in predicting ME values only when 
associated with corn chemical composition obtained by 
the conventional methods (LAB). The effectiveness of 
different equations for each method of analysis can be 
justified by the fact that most equations tested had MM 
as regressive variable, as explained earlier. In addition, 
MM has a negative effect on ME, since it acts as a dilu-
ent of GE, reducing the organic matter content in foods 
(Morgan et al., 1987; Pasquetti et al., 2015).

The NDF is another regressive variable that may 
have contributed to the variation in performances of 
the same equation due to the difficulty to determine ac-
curately the different fractions that comprise the food 
fiber. This influences the reference values and, conse-
quently, the predictive power of the adjusted model. In 
addition, the fibrous fraction is considered an important 
predictor of the energy value of food.

Fiber has a negative effect due to its lower digest-
ibility and its ability to cause changes in the apparent 
digestibility of the other nutrients (Noblet et al., 1993). 
As the NDF content increases, there is a reduction in the 
digestibility of CP and EE (Le Goff and Noblet, 2001; 
Noblet et al., 1993; Noblet and van Milgen, 2004), which 
contribute to the energy values of food.

Thus, the significance observed for the equations 
(ME1, ME2 and ME7), when associated with the NIRS 
method, is explained by the other regressive variables 
of the model (Table 6). Variables, such as GE and EE, 
when together with NDF, form a reasonable basis for a 
predictive equation (Morgan et al., 1987). Similary, EE is 
considered a good predictor of corn ME due to its high 
energy value (Li et al., 2014) and has a positive effect on 
ME (Morgan et al., 1987). The equations ME4, ME6, ME8 
and ME9 showed no significance for the angular coeffi-
cient (β1), demonstrating the absence of a linear relation-
ship between EME and OME for the evaluated methods 
(NIRS or LAB). 

The use of prediction equations associated or not 
to NIRS requires caution, since predicted ME values us-
ing NIRS (EMEnirs) are often similar to laboratory val-

Table 4 – Chemical composition of corn of different cultivars 
expressed as feed basis.

Corn DM1 MM CP EE NDF ADF GE
---------------------------------------------------- % --------------------------------------------------- kcal kg–1

1 86.57 1.32 9.27 3.49 10.31 3.71 3,838
2 88.12 1.14 8.22 3.60 9.66 3.30 3,946
3 88.33 1.13 7.75 3.40 10.89 3.12 3,933
4 88.64 1.04 7.38 3.32 10.73 3.38 3,915
5 89.61 1.20 7.49 3.56 11.74 3.56 3,969
6 88.35 1.17 7.83 3.53 12.15 3.16 3,924
7 88.56 1.11 7.68 3.41 10.76 3.18 3,922
8 87.79 1.09 7.80 3.60 12.23 3.62 3,909
9 88.57 0.94 7.33 3.55 10.83 4.27 3,911
10 89.71 0.90 7.93 3.61 11.37 3.11 3,939
Average 88.43 1.10 7.87 3.56 11.07 3.44 3,921
SD2 0.89 0.12 0.56 0.15 0.81 0.37 34.11
CV (%)3 1.00 11.79 7.97 4.81 6.91 10.90 0.55
Range 3.14 0.42 1.94 0.48 2.57 1.16 59.83
1DM = Dry matter; MM = Mineral matter; CP = Crude protein; EE = Ether 
extract; NDF = Neutral detergent fiber; ADF = Acid detergent fiber; GE = 
Gross energy; 2SD = Standard deviation; 3CV% = Coefficient of variation.

Table 5 – Energetic values and coefficients of metabolizable energy 
of different corns for pigs, as feed basis.

Corn GE1 DCGE2 DE3 CMGE4 ME5 ME:DE6

kcal kg–1 % kcal kg–1 % kcal kg–1

1 3,838 90.33abc 3,467 84.51b 3,244 93
2 3,946 91.18abc 3,598 88.61ab 3,497 97
3 3,933 90.49abc 3,559 86.83ab 3,415 96
4 3,915 90.76abc 3,553 88.75ab 3,474 97
5 3,969 85.68c 3,400 83.00b 3,294 96
6 3,924 92.07abc 3,613 88.40ab 3,469 96
7 3,922 95.66ª 3,752 92.07ª 3,611 96
8 3,909 92.97ab 3,634 90.02ab 3,518 96
9 3,911 90.13abc 3,525 87.98ab 3,441 97
10 3,939 87.97bc 3,465 85.74ab 3,377 97
CV%7 - 3.06 - 3.41 - -
abcMeans followed by different letters in the column differ by Student Newman 
Keuls Test (p ≤ 0.05); 1Gross energy; 2Digestibility coefficients of gross 
energy; 3Digestible energy; 4Coefficients of metabolizability of gross energy; 
5Metabolizable energy; 6Relation ME:DE; 7Coefficient of variation.
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1D and I) adjusted between the values estimated and 
observed in the metabolism test for the evaluated 
methods (NIRS and LAB) and cannot be used to predict 
the ME values of corn. The adjusted regression models 
for equations ME3, ME5, ME6, ME8 and ME10 were con-
sidered distinct by the comparison test of parameters 
(Table 6 and Figures 1C, E, F, H and J).Equations ME1, 
ME2 and ME7 comprise up to four variables of chemi-
cal corn composition, which are all well predicted us-

ues (EMElab), but both predictions may differ from the 
real value of ME, determined in the metabolism assay 
(OME) (Figures 1A, B, and G).

Based on the comparison test of parameters of the 
adjusted regression models for the different methods of 
analysis, equations ME1, ME2, ME4, ME7 and ME9 were 
considered to be the same (Figures 1A, B, D, G and I). 
However, ME4 and ME9 equations were not significant 
for the angular coefficient of the straight line (Figures 

Table 6 – Posterior Bayesian estimates for regression equations of the estimated values of metabolizable energy (EME) as a function of the 
observed values of metabolizable energy (OME), for the corn analyzed by near-infrared spectroscopy (NIRS) and physico-chemical methods 
(LAB).

Equations Methods Regression models1 Parameters Average SD2 Median
ICr 95 %3

2.5 % 97.5 %

ME1

Nirs* Ŷ = 3,775.81 + 0.0452xa
β0 3,775.81 64.40 3,777.52 3,641.10 3,898.17
β1 0.0452 0.0165 0.0447 0.0137 0.0798

Lab Ŷ = 3,078.40 + 0.2195xa
β0 3,078.40 663.08 3,196.16 1,429.33 4,039.80
β1 0.2195 0.1706 0.1892 -0.0278 0.6437

ME2

Nirs* Ŷ = 3,725.73 + 0.0506xa
β0 3,725.73 102.36 3,730.42 3,506.20 3,914.23
β1 0.0506 0.0263 0.0494 0.0021 0.1071

Lab Ŷ = 3,072.44 + 0.2108xa
β0 3,072.44 666.01 3,190.57 1,416.93 4,038.74
β1 0.21086 0.1714 0.1804 -0.0377 0.6368

ME3

Nirs Ŷ = 3,679.42 + 0.0582xa
β0 3,679.42 128.33 3,686.88 3,400.24 3,910.73
β1 0.0582 0.0330 0.0563 -0.0012 0.1301

Lab* Ŷ = 2,771.52 + 0.2769xb
β0 2,771.52 646.69 2,869.84 1,203.24 3,757.40
β1 0.2769 0.1664 0.2516 0.0232 0.6804

ME4

Nirs Ŷ = 3,232.14 + 0.1454xa
β0 3,232.14 542.66 3,325.72 1,880.12 4,017.98
β1 0.1454 0.1396 0.1214 -0.0568 0.4931

Lab Ŷ = 2,827.62 + 0.2313xa
β0 2,827.62 806.77 2,955.60 895.6702 4,041.39
β1 0.2313 0.2076 0.1984 -0.0810 0.7286

ME5

Nirs Ŷ = 3,956.47 + 0.0214xa
β0 3,956.47 75.98 3,959.12 3,795.83 4,098.99
β1 0.0214 0.0195 0.0207 -0.0152 0.0627

Lab* Ŷ = 2,933.84 + 0.2815xb
β0 2,933.84 730.05 3,057.47 1,143.46 4,012.65
β1 0.2815 0.1878 0.2498 0.0039 0.7421

ME6

Nirs Ŷ = 3,939.77 + 0.0296xa
β0 3,939.77 111.01 3,945.71 3,699.55 4,141.41
β1 0.0296 0.0285 0.0280 -0.0222 0.0914

Lab Ŷ = 3,082.51 + 0.2411xb
β0 3,082.51 707.68 3,211.17 1,322.00 4,102.99
β1 0,2411 0.1820 0.2080 -0.0215 0.6939

ME7

Nirs* Ŷ = 3,613.54925 + 0.0462xa
β0 3,613.55 79.89 3,616.18 3,444.99 3,763.81
β1 0.0462 0.0205 0.0455 0.0075 0.0895

Lab Ŷ = 3,479.52154 + 0.0753xa
β0 3,479.52 352.91 3,529.37 2,632.36 4,018.89
β1 0.0753 0.0908 0.0625 -0.0634 0.2932

ME8

Nirs Ŷ = 3,730.70640 + 0.0526xa
β0 3,730.71 128.38 3,738.29 3,451.14 3,961.73
β1 0.0526 0.0330 0.0507 -0.0067 0.1246

Lab Ŷ = 3,001.93720 + 0.2310xb
β0 3,001.94 710.94 3,126.26  1,245.56 4,041.53
β1 0.2310 0.1829 0.1991 -0.0364 0.6830

ME9

Nirs Ŷ = 3,767.05383 + 0.0480xa
β0 3,767.05 104.06 3,771.97 3,543.48 3,958.20
β1 0.0480 0.0267 0.0467 -0.0011 0.1055

Lab Ŷ = 2,799.08043 + 0.2887xa
β0 2,799.08 778.53 2,920.99 929.99 3,975.91
β1 0.2887 0.2003 0.2573 -0.0141 0.7697

ME10

Nirs Ŷ = 3,703.81032 + 0.0566xa
β0 3,703.81 130.40 3,711.58 3,419.69 3,938.26
β1 0.0566 0.0335 0.0546 -0.0036 0.1297

Lab* Ŷ = 2,668.20576 + 0.3082xb
β0 2,668.21 700.00 2,770.60 989.63 3,748.60
β1 0.3082 0.1801 0.2818 0.0301 0.7400

*Indicates significance for the intercept β0 and for the angular coefficient β1 of the adjusted line; 1Different letters in the columns indicate significant differences 
between the models adjusted by means of the coefficient comparison test; 2SD = Standard deviation; 3ICr = Credibility interval (p ≤ 0.05).
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Figure 1 – Regression models adjusted for the estimated metabolizable energy (EME) values by equations ME1 (A), ME2 (B), ME3 (C), ME4 (D), 
ME5 (E), ME6 (F), ME7 (G), ME8 (H), ME9 (I), ME10 (J) as a function of the observed metabolizable energy (OME) values for corn analyzed by 
near infrared spectroscopy (NIRS) and physical chemical methods (LAB).

ing NIRS (Figures 1A, B and G). The use of these NIR-
predicted parameters allows for easy and economical 
application (Pozza et al., 2008). Developing prediction 
equations with few variables is important because it 
facilitates the maintenance of robustness and predic-
tive power of the NIRS calibration / prediction curve. 
Moreover, it allows for the periodical expansion of the 
reference database.

Conclusion

Near infrared spectroscopy was effective in de-
termining the NDF, EE, CP and GE contents compared 

to the conventional method of laboratory analysis, indi-
cating that NIRS could be used as an analysis method to 
determine corn chemical composition. The calibration 
set with a larger number of samples and the optimiza-
tion of spectral pre-treatment could improve the NIRS 
calibration and prediction performance for MM. The 
prediction equations ME1 = 4,334 - 8.1MM + 4.1EE 
- 3.7NDF; ME2 = 4,194 - 9.2MM + 1.0CP + 4.1EE - 
3.5NDF and ME7 = 16.13 - 9.5NDF + 16EE + (23CP 
× NDF) – (138MM × NDF) were the most adequate to 
predict the ME values of corn for pigs using NIRS com-
pared to the laboratory tests; however, neither method 
was accurate.
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