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Abstract. In the description of the long-time behavior of solutions to
nonautonomous differential equations the notion of a pullback attrac-
tor plays a similar role as the global attractor in autonomous dynam-
ical systems. We present the theorem on the existence of a pullback
attractor if the evolution process is a family of closed operators. The
abstract result is formulated in the context of the smoothing properties
of the process and for pullback attractors attracting a given universe,
i.e. a chosen class of possibly time-dependent families of sets. We also
present an application of the result to reaction-diffusion equations.

1. Introduction

Dynamical approach to autonomous differential equations leads to the
construction of a semigroup and the asymptotic behavior of solutions in-
volves questions about the global attractor. This approach brought various
results on the existence of global attractors with most of the theorems re-
quiring continuity of the semigroup (see e.g. [14], [26], [9]). However, this
requirement may be sometimes difficult to obtain in the phase space, but
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some weaker continuity may still hold. One of the ways to release the as-
sumption of continuity appears in [29], where semigroups satisfying norm-
to-weak continuity are considered. This assumption can be substituted
even by a weaker premise of closedness of operators forming the semigroup.
This was done by Pata and Zelik in [20], where the authors proved ex-
istence of a global attractor for closed semigroups. Recently it has been
shown in [10] that this can be obtained even for the class of asymptotically
closed semigroups. Another advantage of the approach presented therein is
consideration of bi-space global attractors, an idea already used e.g. in [2],
[1], [8]. This allows more flexibility in proving compactness of the attractor
and a broader basin of attraction for the semigroup. The above-mentioned
ideas have been an inspiration for the present paper.

The nonautonomous differential equations became intensively investi-
gated in the recent years. From the dynamical point of view this resulted
in considering the analogue of a semigroup in the form of the evolution pro-
cess. However, there is no unique equivalent notion for the global attractor
- the uniform attractors, kernel sections, pullback attractors or forward
attractors were explored among others (see [7], [6]).

First theorems on the existence of pullback attractors were formulated
under the assumption of continuity of the process (see e.g. [11], [3]) and
different assumptions of dissipativity and compactness. The continuity of
the process is also a priori assumed in the monographs by Kloeden, Ras-
mussen [15] and Carvalho, Langa, Robinson [5]. The successful attempts to
construct the pullback attractor without continuity were carried out e.g. in
[16] and [17], where norm-to-weak (or strong-weak as in [19]) continuity of
the process was used. This was done in the context of pullback D-attractors
in complete metric spaces and required that the process is dissipative pos-
sessing a family of pullback D-absorbing sets and is pullback D-limit set
compact, which is a form of asymptotic compactness.

Recently appeared in the literature results concerning also closed pro-
cesses. A similar result to the one from [20] was given in [25] in the case
of a closed cocycle, which possesses a bounded absorbing set and the exist-
ing pullback attractor attracts bounded subsets of the phase space. Closed
processes in the context of uniform attractors were also considered in [28].

In the present article we consider a process on a complete metric space V
and the universe D of families of nonempty subsets of V . We also assume
that there exists a family of subsets of V , which pullback absorbs families
from the universe. Moreover, we suppose that the absorbing family enters
an auxiliary complete metric space W in the pullback sense. The main
Theorem 2.16 yields the existence of a pullback attractor with its sections
compact in W and attracting the universe D also in the topology of W .
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This is done under the assumptions of (V − W ) closedness (see Defini-
tion 2.12) and pullback asymptotic compactness. Additionally, we note in
Corollary 2.17 that if the absorbing family B̂0 belongs to the universe, it
suffices to consider only the (V −W ) pullback {B̂0}-asymptotic closedness
of the process (see Definition 2.11).

During the preparation of this paper the author learned about the article
[13], where the authors also explored the closed processes in more detail.
Their Theorem 3.11 refers to the case of V = W and the (V − V ) closed
process.

Following [17] we illustrate the theory with an example of a reaction-
diffusion equation in a bounded domain with Dirichlet boundary condition.
Here the process is (L2(Ω)−H1

0 (Ω)) closed and the universe D is a class of
suitable families of subsets of L2(Ω), which contains all time-independent
families of bounded subsets of L2(Ω). The compactness of the sections of
the pullback attractor as well as the attraction of D takes place in the space
H1

0 (Ω).

2. Closed processes and pullback attractors

In this paper we consider evolution processes generated by nonautonomous
differential equations.

Definition 2.1. Let V be a nonempty set. A family {U(t, s) : t ≥ s} of
mappings U(t, s) : V → V , t ≥ s, t, s ∈ R, is called a process on V if

U(t, s) = U(t, τ)U(τ, s), t ≥ τ ≥ s, U(t, t) = IdV , t ∈ R. (2.1)

We pursue the investigation of the asymptotic behavior of these evolution
processes by finding a pullback attractor for the process. In the genesis
of the theory of pullback attractors (see [11]) the pullback attractor was a
family of nonempty compact subsets of a metric space V that was invariant
under the process (see Definition 2.2(ii)) and attracted each bounded subset
of V (cp. Definition 2.2(iii)). This was later extended to the attraction of
time-dependent families of (bounded) subsets of V . For the comparison of
the two notions see [19]. Since we would like to have the generality as for
bi-space global attractors (cp. [8]), we propose the following definition.

Let {U(t, s) : t ≥ s} be a process on a complete metric space (V, dV ) and
let (W,dW ) be an auxiliary complete metric space. Suppose also that D
is a nonempty class of time-parameterized families D̂ = {D(t) : t ∈ R} of
nonempty subsets of V such that

for any D̂ ∈ D and t ∈ R there exists sD̂,t ≤ t such that γsD̂,t
(D̂, t) ⊂ W,

(2.2)

São Paulo J.Math.Sci. 6, 2 (2012), 227–246



230 R. Czaja

where we denote
γs0(D̂, t) =

⋃
s≤s0

U(t, s)D(s). (2.3)

The class D is sometimes called a universe (see e.g. [19]) and may require
closedness with respect to inclusion (see [5, Definition 2.45], [15, Definition
3.23]), which is not assumed here a priori.

Definition 2.2. The family Â = {A(t) : t ∈ R} of subsets of V is called a
(V −W ) pullback D-attractor if

(i) the set A(t) ⊂ V ∩ W is nonempty and compact in W for each
t ∈ R,

(ii) Â is invariant under the process, i.e.,

U(t, s)A(s) = A(t) for t ≥ s,

(iii) Â is pullback D-attracting with respect to the Hausdorff semidis-
tance distW in W , i.e., for every D̂ ∈ D and t ∈ R we have

lim
s→−∞

distW (U(t, s)D(s),A(t)) = lim
s→−∞

sup
u∈D(s)

inf
v∈A(t)

dW (U(t, s)u, v) = 0,

(iv) Â is minimal in the sense that if another family Ĉ of nonempty
closed subsets of W pullback attracts D, then Â ⊂ Ĉ, i.e., A(t) ⊂
C(t), t ∈ R.

If D consists of all autonomous families of nonempty bounded subsets of
V and V = W , then the (V − V ) pullback D-attractor coincides with the
notion considered e.g. in [11].

The theorems on existence of global attractors or pullback attractors
are based on certain dissipativity and compactness of the semigroup or
process. Below we formulate two notions of compactness of a process. The
first one follows e.g. [16, Definition 3.1] and uses the Kuratowski measure
of noncompactness αW in the space W

αW (B) = inf{δ > 0: B has a finite cover by sets in W of diameter ≤ δ},
(2.4)

where B is a bounded subset of W (see [22, Lemma 22.2] for its properties).

Definition 2.3. We say that the process {U(t, s) : t ≥ s} is (V − W )
pullback D-limit set compact if for any D̂ ∈ D, t ∈ R and ε > 0 there exists
tD̂,t,ε ≤ sD̂,t such that

γtD̂,t,ε
(D̂, t) is bounded in W and αW

(
γtD̂,t,ε

(D̂, t)
)

< ε.
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It is easy to see that if the process possesses a (V − W ) pullback D-
attractor, then it is necessarily (V −W ) pullback D-limit set compact.

The other notion of compactness is based on [16, Definition 2.2] and is
equivalent to the previous one (cp. [16, Theorem 3.3] and [27, Theorem
3.9])

Definition 2.4. The process {U(t, s) : t ≥ s} is (V − W ) pullback D-
asymptotically compact if for any D̂ ∈ D, t ∈ R and any sequences sn ≤
sD̂,t, sn → −∞ and xn ∈ D(sn) ⊂ V , the sequence {U(t, sn)xn} contains a
convergent subsequence in W .

Proposition 2.5. The process {U(t, s) : t ≥ s} is (V −W ) pullback D-limit
set compact if and only if the process {U(t, s) : t ≥ s} is (V −W ) pullback
D-asymptotically compact.

The meaning of these two notions is that pullback ω-limit sets ωW (D̂, t)
in W of families D̂ ∈ D are nonempty, compact in W and pullback attract
D̂ at time t. By definition we set for D̂ ∈ D and t ∈ R

ωW (D̂, t) =
⋂

s≤sD̂,t

clW γs(D̂, t). (2.5)

Equivalently, we have

ωW (D̂, t) =
{w ∈ W : U(t, sn)xn → w in W for some sn → −∞ and xn ∈ D(sn)}.

Proposition 2.6. The two conditions are equivalent:

(i) the process {U(t, s) : t ≥ s} is (V − W ) pullback D-asymptotically
compact,

(ii) for any D̂ ∈ D and t ∈ R the set ωW (D̂, t) is nonempty, compact
in W and pullback attracts D̂ at time t w.r.t. distW .

Proof. The necessity of the condition (ii) follows along the lines of [4, Propo-
sition 12] (cf. also [19, Proposition 2]). To see its sufficiency for the pro-
cess to be (V −W ) pullback D-asymptotically compact note that for fixed
D̂ ∈ D, t ∈ R, sn ≤ sD̂,t, sn → −∞ and xn ∈ D(sn) and for any k ∈ N we

can find nk ≥ k and wk ∈ ωW (D̂, t) such that dW (U(t, snk
)xnk

, wk) < 1/k.
By compactness of ωW (D̂, t) we choose a convergent subsequence of {wk}.
This gives a convergent subsequence of {U(t, sn)xn} in W . �

In order to guarantee (V − W ) pullback D-asymptotic compactness in
applications the following condition can be verified if W is a Banach space.
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It had its origin in [18] and was later generalized to the case of processes
(cp. [16, Definition 3.6]).

Definition 2.7. If (W, ‖·‖W ) is a Banach space we say that the process
{U(t, s) : t ≥ s} on V satisfies (V − W ) pullback D-flattening condition
if for any D̂ ∈ D, t ∈ R and ε > 0 there exist t0 = t0(D̂, t, ε) ≤ sD̂,t

and a finite dimensional subspace W1 = W1(D̂, t, ε) of W together with a
mapping P = P (D̂, t, ε) : W → W1 such that

(1) M := P
(
γt0(D̂, t)

)
is bounded in W ,

(2) R := (I − P )
(
γt0(D̂, t)

)
⊂ BW (0, ε).

Proposition 2.8. If (W, ‖·‖W ) is a Banach space and the process
{U(t, s) : t ≥ s} on V satisfies (V − W ) pullback D-flattening condition,
then the process is (V −W ) pullback D-limit set compact.

Proof. Let D̂ ∈ D, t ∈ R and ε > 0 and choose t0 = t0(D̂, t, ε/4) ≤ sD̂,t

and W1 = W1(D̂, t, ε/4) according to the assumption. Since W1 is a finite
dimensional subspace of W , it is a closed subspace of W . From (1) it
follows that clW M = clW1 M is bounded and closed in W1, hence compact
in W1 (and W ). Thus M is precompact in W and αW (M) = 0. Moreover,
γt0(D̂, t) = M + R is bounded in W and by (2)

αW

(
γt0(D̂, t)

)
≤ αW (M) + αW (R) = αW (R) ≤ ε/2 < ε.

This shows that the process is (V −W ) pullback D-limit set compact. �

Remark 2.9. Observe that in order to obtain (V −W ) pullback D-limit
set compactness we could put in (2) a finite union of ε-balls in W instead
of BW (0, ε). Furthermore, we could use a more general splitting of the
process U(t, s) = S(t, s) + C(t, s), s ≤ t0, instead of U(t, s) = PU(t, s) +
(I − P )U(t, s).

The converse of Proposition 2.8 is also true in uniformly convex Banach
spaces W or, even more generally, in reflexive Banach spaces W , which
are also strictly convex, i.e., where ‖x + y‖W = ‖x‖W + ‖y‖W with x, y ∈
W \ {0} implies y = cx for some c > 0 (see [24, p. 35]). Equivalently,
the strict convexity of W means that for any x, y ∈ W , x 6= y, ‖x‖W =
‖y‖W = 1 and λ ∈ (0, 1) we have ‖λx + (1− λ)y‖W < 1. The strictly
convex reflexive Banach spaces are characterized by the property that for
any closed linear subspace W1 and any x ∈ W there exists a uniquely
defined element Px ∈ W1 such that ‖x− Px‖W = infz∈W1 ‖x− z‖W and
thus the metric projection P : W → W1 is well-defined (see [12], [23, p. 111]
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or [24, Theorem 3.17]). Moreover, we have ‖Px‖W ≤ 2 ‖x‖W , x ∈ W , since
0 ∈ W1.

Proposition 2.10. If (W, ‖·‖W ) is a reflexive strictly convex Banach space
and the process {U(t, s) : t ≥ s} on V is (V − W ) pullback D-limit set
compact, then the process satisfies (V −W ) pullback D-flattening condition.

Proof. Fix D̂ ∈ D, t ∈ R and ε > 0. By assumption there exists tD̂,t,ε ≤ sD̂,t

such that γtD̂,t,ε
(D̂, t) is bounded in W and αW

(
γtD̂,t,ε

(D̂, t)
)

< ε. This
means that there is a finite number N of nonempty subsets A1, . . . , AN

of W with diameters less than ε such that γtD̂,t,ε
(D̂, t) ⊂

⋃N
i=1 Ai. We

choose xi ∈ Ai and set W1 = span{x1, . . . , xN}. By reflexivity and strict
convexity of W we know that there exists the metric projection P : W → W1

and ‖x− Px‖W = infz∈W1 ‖x− z‖W for each x ∈ W . The boundedness

of P implies that P
(
γtD̂,t,ε

(D̂, t)
)

is bounded in W . Moreover, we get for

x ∈ γtD̂,t,ε
(D̂, t)

‖(I − P )x‖W = inf
z∈W1

‖x− z‖W ≤ inf
z∈{x1,...,xN}

‖x− z‖W < ε.

This proves (V −W ) pullback D-flattening condition. �

Theorems on existence of global attractors require some kind of continu-
ity argument for the semigroup. As already mentioned in the Introduction
this can be reduced to the closedness of the semigroup (see [20]) or even
to the asymptotic closedness (see [10]). Following the latter paper we give
the next definition.

Definition 2.11. We say that the process {U(t, s) : t ≥ s} on V is
(V − W ) pullback D-asymptotically closed if for any D̂ ∈ D, t > s and
sn ≤ min{sD̂,s, sD̂,t}, sn → −∞ and xn ∈ D(sn)

if U(s, sn)xn → v in W and U(t, sn)xn → w in W,

then v ∈ V and U(t, s)v = w.

In some cases this may be insufficient, so we also define a stronger notion.

Definition 2.12. We say that the process {U(t, s) : t ≥ s} on V is (V −W )
closed if for any t > s and xn ∈ V ∩W such that U(t, s)xn ∈ V ∩W

if xn → v in W and U(t, s)xn → w in W, then v ∈ V and U(t, s)v = w.

The final ingredient of the results on existence of global attractors is
dissipativity.
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Let {U(t, s) : t ≥ s} be a process on a complete metric space (V, dV ) and
suppose now that D is a nonempty class of time-parameterized families
D̂ = {D(t) : t ∈ R} of nonempty subsets of V .

Definition 2.13. The process {U(t, s) : t ≥ s} on V is pullback D-dissipative
if there exists a pullback D-absorbing family B̂0 = {B0(t) : t ∈ R} of
nonempty subsets of V , i.e., for any D̂ ∈ D and t ∈ R there exists TD̂,t ≤ t

such that
U(t, s)D(s) ⊂ B0(t), s ≤ TD̂,t. (2.6)

The next proposition shows how the properties of B̂0 translate into prop-
erties of D.

Proposition 2.14. Let (W,dW ) be a complete metric space. If B̂0 =
{B0(t) : t ∈ R} is a pullback D-absorbing family of nonempty subsets of
V for the process {U(t, s) : t ≥ s} on V such that

for any t ∈ R there exists sB̂0,t ≤ t such that γsB̂0,t
(B̂0, t) ⊂ W, (2.7)

then (2.2) holds. Moreover, if the process is (V − W ) pullback {B̂0}-
asymptotically compact, then the process is (V−W ) pullback D-asymptotically
compact. Furthermore, if the process is (V−W ) pullback {B̂0}-asymptotically
closed, then it is (V −W ) pullback D-asymptotically closed.

Proof. Fix D̂ ∈ D and t ∈ R. By (2.7) and (2.6) we set sD̂,t := TD̂,sB̂0,t
≤

sB̂0,t ≤ t. Then for any s ≤ sD̂,t we have

U(t, s)D(s) = U(t, sB̂0,t)U(sB̂0,t, s)D(s) ⊂ U(t, sB̂0,t)B0(sB̂0,t) ⊂ W,

which gives (2.2). Moreover, if the process is (V − W ) pullback {B̂0}-
asymptotically compact, then for any sequences sn ≤ min{sD̂,t, sB̂0,t},
sn → −∞ and xn ∈ D(sn) we choose a subsequence such that snk

≤
TD̂,sk

≤ sk and have U(t, snk
)D(snk

) ⊂ U(t, sk)B0(sk). Hence the sequence
{U(t, snk

)xnk
} contains a convergent subsequence in W and the process is

(V −W ) pullback D-asymptotically compact. The claim regarding (V −W )
pullback D-asymptotic closedness follows by similar argument. �

In the above proposition and Theorem 2.16 formulated below the prop-
erties for the class D follow from the properties of the family B̂0 without
assuming that B̂0 ∈ D. Therefore we maintain the possibility that D con-
sists of families of all time-independent bounded (or compact) sets.

Below we show that the pullback asymptotic closedness guarantees in-
variance of pullback ω-limit sets under the process.
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Proposition 2.15. Let (W,dW ) be a complete metric space and
{U(t, s) : t ≥ s} on V be a pullback D-dissipative process with B̂0 being the
pullback D-absorbing family satisfying (2.7). If the process is (V −W ) pull-
back {B̂0}-asymptotically closed and (V −W ) pullback {B̂0}-asymptotically
compact, then ωW (D̂, t) ⊂ V for any D̂ ∈ D ∪ {B̂0} and t ∈ R. Moreover,
the family {ωW (D̂, t) : t ∈ R} is invariant under the process, i.e.

U(t, s)ωW (D̂, s) = ωW (D̂, t), t ≥ s.

Proof. By Proposition 2.14 the condition (2.2) holds and the process is
(V −W ) pullback (D ∪ {B̂0})-asymptotically compact and closed. We fix
D̂ ∈ D ∪ {B̂0} and t > s. Let v ∈ ωW (D̂, s). Then there exist sn ≤
min{sD̂,s, sD̂,t}, sn → −∞ and xn ∈ D(sn) such that U(s, sn)xn → v

in W . By (V − W ) pullback {D̂}-asymptotic compactness there exists
a subsequence {nk} and w ∈ ωW (D̂, t) such that U(t, s)U(s, snk

)xnk
→

w in W . By (V − W ) pullback {D̂}-asymptotic closedness we get v ∈
V and U(t, s)v = w ∈ ωW (D̂, t). This proves that ωW (D̂, s) ⊂ V and
U(t, s)ωW (D̂, s) ⊂ ωW (D̂, t).

Let now w ∈ ωW (D̂, t). Then there exist sn ≤ min{sD̂,t, sD̂,s}, sn → −∞
and xn ∈ D(sn) such that U(t, sn)xn = U(t, s)U(s, sn)xn → w in W . By
(V −W ) pullback {D̂}-asymptotic compactness there exists a subsequence
{nk} and v ∈ ωW (D̂, s) such that U(s, snk

)xnk
→ v in W . Thus (V −W )

pullback {D̂}-asymptotic closedness implies v ∈ V and U(t, s)v = w and
ωW (D̂, t) ⊂ U(t, s)ωW (D̂, s). �

Below we present the main result of this section on the existence of bi-
space pullback attractors for closed processes.

Theorem 2.16. Let {U(t, s) : t ≥ s} be a process on a complete metric
space V and let W be an auxiliary complete metric space. Suppose also that
D is a nonempty class of time-parameterized families D̂ = {D(t) : t ∈ R} of
nonempty subsets of V . Assume that the process is pullback D-dissipative
with B̂0 being the pullback D-absorbing family in V satisfying (2.7). If
the process is (V − W ) closed and (V − W ) pullback {B̂0}-asymptotically
compact, then there exists a (V −W ) pullback D-attractor Â = {A(t) : t ∈
R} for the process {U(t, s) : t ≥ s} given by

A(t) = clW
⋃

D̂∈D

ωW (D̂, t) ⊂ ωW (B̂0, t), t ∈ R.
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Proof. From Proposition 2.14 it follows that the process {U(t, s) : t ≥ s} is
(V −W ) pullback (D∪{B̂0})-asymptotically compact. By Proposition 2.6,
for any D̂ ∈ D∪{B̂0} and any t ∈ R the set ωW (D̂, t) is nonempty, compact
in W and pullback attracts D̂ at time t w.r.t. distW . We define

A(t) := clW
⋃

D̂∈D

ωW (D̂, t), t ∈ R.

Since D is nonempty, A(t) is also nonempty. By definition it is a closed
subset of W and pullback attracts each D̂ ∈ D at time t ∈ R w.r.t. distW .
To verify the minimality property (Definition 2.2(iv)), let {C(t) : t ∈ R}
be a family of nonempty closed subsets of W such that for t ∈ R and
D̂ ∈ D we know that distW (U(t, s)D(s), C(t)) → 0 as s → −∞. Let
w ∈ ωW (D̂, t). Then there exist sn ≤ sD̂,t, sn → −∞ and xn ∈ D(sn)
such that U(t, sn)xn → w in W . Thus for any k ∈ N there are nk ∈ N and
zk ∈ C(t) such that dW (U(t, snk

)xnk
, zk) < 1/k. This implies zk → w in

W and w ∈ clW C(t) = C(t) and hence we obtain A(t) ⊂ C(t).

Observe that for any D̂ ∈ D and t ∈ R we have

lim
s→−∞

distW (U(t, s)D(s), ωW (B̂0, t)) = 0.

Indeed, for ε > 0 fixed, let tB̂0,t,ε ≤ sB̂0,t be such that

distW (U(t, s)B0(s), ωW (B̂0, t)) < ε for s ≤ tB̂0,t,ε. Moreover, from (2.6)
there exists TD̂,tB̂0,t,ε

≤ tB̂0,t,ε such that we have U(tB̂0,t,ε, s)D(s) ⊂ B0(tB̂0,t,ε)

for s ≤ TD̂,tB̂0,t,ε
. Thus we obtain for s ≤ TD̂,tB̂0,t,ε

distW (U(t, s)D(s), ωW (B̂0, t)) ≤ distW (U(t, tB̂0,t,ε)B0(tB̂0,t,ε), ωW (B̂0, t)) < ε.

Concluding, {ωW (B̂0, t) : t ∈ R} is a family of nonempty, compact subsets
of W , pullback attracting D w.r.t. distW . By the above considerations it
follows that for any D̂ ∈ D and t ∈ R we have ωW (D̂, t) ⊂ ωW (B̂0, t). This
implies that A(t) ⊂ ωW (B̂0, t), t ∈ R, and A(t) is a compact subset of W .

Note that using only (V − W ) pullback {B̂0}-asymptotic closedness of
the process, it follows from Proposition 2.15 that A(t) ⊂ ωW (B̂0, t) ⊂ V

for t ∈ R and for any D̂ ∈ D ∪ {B̂0} and t ≥ s we have U(t, s)ωW (D̂, s) =
ωW (D̂, t).

If B̂0 /∈ D , we now use the stronger assumption of (V −W ) closedness
of the process to prove the invariance of the family {A(t) : t ∈ R}.
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Indeed, let t > s and v ∈ A(s). Then there exist xn ∈ ωW (D̂n, s) ⊂
V ∩W for some D̂n ∈ D such that xn → v in W . We know that U(t, s)xn ∈
ωW (D̂n, t) ⊂ A(t) ⊂ V ∩W . By compactness in W of A(t) there exists a
subsequence {nk} and w ∈ A(t) such that U(t, s)xnk

→ w in W . By the
(V −W ) closedness of the process we get U(t, s)v = w and U(t, s)A(s) ⊂
A(t).

On the other hand, if w ∈ A(t) then there exist yn ∈ ωW (D̂n, t) ⊂ V ∩W

for some D̂n ∈ D such that yn → w in W . We know that there are
xn ∈ ω(D̂n, s) ⊂ A(s) ⊂ V ∩W such that U(t, s)xn = yn. By compactness
in W of A(s) there exists a subsequence {nk} such that xnk

→ v ∈ A(s) ⊂
V ∩ W in W . By (V − W ) closedness of the process U(t, s)v = w and
A(t) ⊂ U(t, s)A(s). This ends the proof. �

From the proof of the above theorem we get the direct generalization to
evolution processes of Theorem 4.1 from [10] .

Corollary 2.17. If we substitute in Theorem 2.16 the (V −W ) closedness
of the process {U(t, s) : t ≥ s} by a weaker requirement that the process is
(V −W ) pullback {B̂0}-asymptotically closed and assume additionally that
B̂0 ∈ D, then there exists a (V −W ) pullback D-attractor Â = {A(t) : t ∈ R}
for the process {U(t, s) : t ≥ s} and is given by A(t) = ωW (B̂0, t), t ∈ R.

According to Proposition 2.5, in Theorem 2.16 and Corollary 2.17 the
(V −W ) pullback {B̂0}-asymptotic compactness is equivalent to the (V −W )
pullback {B̂0}-limit set compactness of the process and, by Proposition 2.8,
can be substituted by the (V −W ) pullback D-flattening condition if W is
a Banach space.

Note that if B̂0 is a family of bounded subsets of V which really depend
on time t, then in the above corollary we cannot take in the role of D the
class consisting solely of all constant time-independent families of nonempty
bounded subsets of V .

The condition of (V − W ) pullback {B̂0}-limit set compactness of the
process can be expressed differently if we know that B̂0 also absorbs itself.
This together with the above considerations gives a direct generalization of
[20, Theorem 2].

Proposition 2.18. Let {U(t, s) : t ≥ s} be a process on a metric space
V and let W be an auxiliary complete metric space. Assume that B̂0 =
{B0(t) : t ∈ R} is a family of nonempty subsets of V satisfying (2.7) such
that for any t ∈ R there exists TB̂0,t ≤ t such that

U(t, s)B0(s) ⊂ B0(t), s ≤ TB̂0,t. (2.8)
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The process is (V −W ) pullback {B̂0}-limit set compact if and only if for
each t ∈ R and ε > 0 there exists tB̂0,t,ε ≤ sB̂0,t such that

U(t, tB̂0,t,ε)B0(tB̂0,t,ε) is bounded in W and αW

(
U(t, tB̂0,t,ε)B0(tB̂0,t,ε)

)
< ε.

Proof. To show that the above condition is sufficient note that for t ∈ R
and ε > 0 fixed and for s ≤ TB̂0,tB̂0,t,ε

≤ tB̂0,t,ε we have by (2.8)

U(t, s)B0(s) = U(t, tB̂0,t,ε)U(tB̂0,t,ε, s)B0(s) ⊂ U(t, tB̂0,t,ε)B0(tB̂0,t,ε).

Thus γTB̂0,tB̂0,t,ε

(B̂0, t) is bounded in W and

αW

(
γTB̂0,tB̂0,t,ε

(B̂0, t)
)
≤ αW

(
U(t, tB̂0,t,ε)B0(tB̂0,t,ε)

)
< ε,

which proves the claim. �

3. Application to reaction-diffusion equations

Following [17] we consider

∂tu = 4u− f(u) + g(t), x ∈ Ω, u(t, x) = 0, x ∈ ∂Ω, t > s, (3.1)

u(s, x) = us(x), x ∈ Ω (3.2)

for a bounded smooth domain Ω ⊂ RN and s ∈ R.
We assume that f ∈ C(R, R) and there exists p ≥ 2 and positive con-

stants Ci, i = 1, . . . , 4 such that

C1 |y|p − C2 ≤ f(y)y ≤ C3 |y|p + C4, y ∈ R. (3.3)

We also require that there exists C5 > 0 such that

f ∈ C1(R, R) and f ′(y) ≥ −C5, y ∈ R. (3.4)

Moreover, we assume that

g ∈ L2
loc(R;L2(Ω)) (3.5)

and us ∈ L2(Ω).
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3.1. Weak solutions and the process. In order to formulate the defi-
nition of a weak solution to the above problem, we take into account the
growth condition (3.3) and fix r ≥ 1 such that Hr

0(Ω) ⊂ Lp(Ω); in fact, we
take

r ≥ max{N p− 2
2p

, 1} for p > 2 and r = 1 for p = 2. (3.6)

Definition 3.1. A function u : [s, T ]× Ω → R is called a weak solution of
(3.1) if

u ∈ L2(s, T ;H1
0 (Ω)) ∩ Lp(s, T ;Lp(Ω))

and satisfies the equation
∂tu = 4Du− f(u) + g

in the space Lp∗(s, T ;H−r(Ω)), where r is set in (3.6), ∂tu denotes a dis-
tributional derivative and 4D : H1

0 (Ω) → H−1(Ω) is the operator given by
〈4Du, v〉 = −(∇u,∇v)L2(Ω), u, v ∈ H1

0 (Ω).

It follows from [7, Theorem II.1.8] that every weak solution has a contin-
uous representative u ∈ C([s, T ];L2(Ω)). Moreover, the Galerkin approx-
imation yields the following result on existence and uniqueness of weak
solutions (see [7, Theorems XV.3.1,3.3], [21, Theorem 8.4]).

Theorem 3.2. Under the assumptions (3.3), (3.5) for any T > s, s, T ∈ R
and us ∈ L2(Ω) the equation (3.1) has a weak solution, i.e.,

u ∈ L2(s, T ;H1
0 (Ω)) ∩ Lp(s, T ;Lp(Ω))

with ∂tu ∈ Lp∗(s, T ;H−r(Ω)), where r ≥ 1 is defined in (3.6) and

∂tu = 4Du− f(u) + g in Lp∗(s, T ;H−r(Ω)) (3.7)

and u(s) = us in L2(Ω). In particular, we have u ∈ C([s, T ];L2(Ω)).
If (3.4) also holds, then the solution is unique and for t ∈ [s, T ]

‖u(t)− v(t)‖L2(Ω) ≤ eC5(t−s) ‖us − vs‖L2(Ω) , us, vs ∈ L2(Ω). (3.8)

We define the process

U(t, s)us = uT (t), t ≥ s,

where s ≤ t ≤ T and uT is the weak solution on [s, T ] starting from us.
Note that the fact that u ∈ C([s, T ];L2(Ω)) and (3.8) imply that

{(t, s) ∈ R2 : t ≥ s} × L2(Ω) 3 (t, s, us) 7→ U(t, s)us ∈ L2(Ω)
is continuous. Additionally, more regular initial conditions lead to more
regular solutions (see [21, Theorem 8.5]).
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Theorem 3.3. Under the assumptions (3.3)-(3.5) for any T > s, s, T ∈ R
and us ∈ H1

0 (Ω) ∩ Lp(Ω) the equation (3.1) has a unique solution

u ∈ L2(s, T ;H2(Ω) ∩H1
0 (Ω)) ∩ L∞(s, T ;H1

0 (Ω) ∩ Lp(Ω))

with ∂tu ∈ L2(s, T ;L2(Ω)) such that

∂tu = 4Du− f(u) + g in L2(s, T ;L2(Ω)) (3.9)

and u(s) = us in H1
0 (Ω) ∩ Lp(Ω). In particular, u(t) ∈ H1

0 (Ω) ∩ Lp(Ω) for
every t ∈ [s, T ] and

u ∈ C([s, T ];H1
0 (Ω)) ∩ Cw([s, T ];H1

0 (Ω) ∩ Lp(Ω))

and the function
[s, T ] 3 t 7→ ‖|∇u(t)|‖2

L2(Ω) ∈ R

is absolutely continuous with

∂t ‖|∇u(t)|‖2
L2(Ω) = −2(∂tu(t),4Du(t))L2(Ω) for a.e. t ∈ [s, T ].

3.2. The process is (L2(Ω)−H1
0 (Ω)) closed. Since

u ∈ C([s, T ];L2(Ω)) ∩ C((s, T ];H1
0 (Ω)) ∩ Cw((s, T ];H1

0 (Ω) ∩ Lp(Ω)),

if us ∈ L2(Ω), then u(t) ∈ H1
0 (Ω) for every t > s and the continuity of the

process U(t, s) : L2(Ω) → L2(Ω) implies its (L2(Ω)−H1
0 (Ω)) closedness.

3.3. Differential inequalities a.e. in (s, T ). Taking the inner product
of the equation (3.9) in L2(Ω) with u(t) we obtain

∂t ‖u(t)‖2
L2(Ω) + ‖|∇u(t)|‖2

L2(Ω) ≤ 2C2 |Ω|+ λ−1
1 ‖g(t)‖2

L2(Ω) . (3.10)

Applying Poincaré inequality to (3.10) gives

∂t ‖u(t)‖2
L2(Ω) + λ1 ‖u(t)‖2

L2(Ω) ≤ 2C2 |Ω|+ λ−1
1 ‖g(t)‖2

L2(Ω) . (3.11)

Furthermore, taking the inner product of (3.9) in L2(Ω) with −4Du(t)
yields

∂t ‖|∇u(t)|‖2
L2(Ω) + λ1 ‖|∇u(t)|‖2

L2(Ω)

≤ 2C5 ‖|∇u(t)|‖2
L2(Ω) + ‖g(t)− f(0)‖2

L2(Ω) . (3.12)

Let Pn denote the projection of H1
0 (Ω) on the space spanned by n first

eigenfunctions of −4D. We also set Qn = I − Pn, take the inner product
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of the equation (3.9) in L2(Ω) with −4DQnu(t) and use properties of the
eigenvalues λ1 ≤ λ2 ≤ . . . to obtain

∂t ‖|∇Qnu(t)|‖2
L2(Ω) + λn+1 ‖|∇Qnu(t)|‖2

L2(Ω)

≤ 2(‖g(t)‖2
L2(Ω) + ‖f(u(t))‖2

L2(Ω)). (3.13)

If N = 1, 2 and 2 ≤ p < ∞ or N ≥ 3 and 2 ≤ p ≤ 1 + N
N−2 , then

∂t ‖|∇Qnu(t)|‖2
L2(Ω) + λn+1 ‖|∇Qnu(t)|‖2

L2(Ω) ≤

≤ 2 ‖g(t)‖2
L2(Ω) + 2C6(1 + ‖|∇u(t)|‖2(p−1)

L2(Ω)
),

(3.14)

since we have H1
0 (Ω) ⊂ L2(p−1)(Ω) and

‖f(u)‖2
L2(Ω) ≤ C6(1 + ‖|∇u|‖2(p−1)

L2(Ω)
).

3.4. The universe D and the assumption on g. We define the universe
of families of nonempty subsets of L2(Ω)

D = {D̂ = {D(t) ⊂ L2(Ω): t ∈ R} :

lim
s→−∞

eλ1s sup{‖u‖2
L2(Ω) : u ∈ D(s)} = 0}.

(3.15)

So far we have assumed about g that it satisfies (3.5). Now we assume
further that ∫ t

−∞
eλ1τ ‖g(τ)‖2

L2(Ω) dτ < ∞, t ∈ R. (3.16)

3.5. Pullback D-dissipativity. We fix D̂ ∈ D and t ∈ R. By definition
of D let TD̂,t < t − 1 < t be such that for any s ≤ TD̂,t and us ∈ D(s) we
have

eλ1s ‖us‖2
L2(Ω) ≤ 2C2λ

−1
1 |Ω| eλ1(t−1). (3.17)

We use this and apply Gronwall inequality to (3.11) on [s, t− 1] and get

‖u(t− 1)‖2
L2(Ω) ≤ 4C2 |Ω|λ−1

1 + λ−1
1 e−λ1(t−1)

∫ t−1

s
eλ1τ ‖g(τ)‖2

L2(Ω) dτ.

(3.18)
We integrate (3.10) on the interval [t− 1, t] and use (3.18) to obtain∫ t

t−1
‖u(τ)‖2

H1
0 (Ω) dτ ≤ c1

(
1 + e−λ1(t−1)

∫ t

−∞
eλ1τ ‖g(τ)‖2

L2(Ω) dτ

)
. (3.19)
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We now apply the uniform Gronwall inequality (see [17, Lemma 3.3]) to
(3.12) on [t− 1, t] and get

‖u(t)‖2
H1

0 (Ω) ≤ 2e−
λ1
2

∫ t

t−1
‖u(τ)‖2

H1
0 (Ω) dτ+

+ e−λ1t

∫ t

t−1
eλ1τ (2C5 ‖u(τ)‖2

H1
0 (Ω) + ‖g(τ)− f(0)‖2

L2(Ω))dτ.

(3.20)

Inserting (3.19) we obtain

‖u(t)‖2
H1

0 (Ω) ≤ c2

(
1 + e−λ1t+λ1

∫ t

−∞
eλ1τ ‖g(τ)‖2

L2(Ω) dτ

)
=: r0(t)2,

(3.21)
where c2 = c2(|Ω| , C2, C5, λ1, ‖f(0)‖2

L2(Ω)) > 0.

We have shown that for any D̂ ∈ D and t ∈ R there exists TD̂,t < t such
that ⋃

s≤TD̂,t

U(t, s)D(s) ⊂ B
H1

0 (Ω)(0, r0(t)) =: B0(t).

We also see that B̂0 = {B0(t) : t ∈ R} ∈ D. Note that from (3.19) we have∫ t

t−1
‖u(τ)‖2

H1
0 (Ω) dτ ≤ c1

c2
r0(t)2. (3.22)

3.6. (L2(Ω)−H1
0 (Ω)) pullback D-asymptotic compactness. Below we

will verify the (L2(Ω) − H1
0 (Ω)) pullback D-flattening condition. We fix

D̂ ∈ D and t ∈ R. Let s0 = s0(D̂, t) < t− 2 < t be such that for any s ≤ s0

and us ∈ D(s) we have

eλ1s ‖us‖2
L2(Ω) ≤ 2C2λ

−1
1 |Ω| eλ1(t−2). (3.23)

We consider σ ∈ [t− 1, t] and have s ≤ s0 < t− 2 ≤ σ − 1 ≤ t− 1 ≤ σ. We
can take σ is the role of t in the previous calculations and obtain

‖u(σ)‖2
H1

0 (Ω) ≤ c2

(
1 + e−λ1σ+λ1

∫ σ

−∞
eλ1τ ‖g(τ)‖2

L2(Ω) dτ

)
≤

≤ c2e
λ1

(
1 + e−λ1t+λ1

∫ t

−∞
eλ1τ ‖g(τ)‖2

L2(Ω) dτ

)
.

Comparing this with (3.21) we have

‖u(σ)‖2
H1

0 (Ω) ≤ eλ1r0(t)2, σ ∈ [t− 1, t]. (3.24)
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Now we use (3.14) if N = 1, 2, 2 ≤ p < ∞ or N ≥ 3, 2 ≤ p ≤ 1 + N
N−2 .

This is the only place where we use this restriction. We apply the uniform
Gronwall inequality (see [17, Lemma 3.3]) on [t− 1, t] and get

‖Qnu(t)‖2
H1

0 (Ω) ≤ 2e−
λn+1

2

∫ t

t−1
‖Qnu(τ)‖2

H1
0 (Ω) dτ

+ 2C6e
−λn+1t

∫ t

t−1
eλn+1τ (1 + ‖u(τ)‖2p−2

H1
0 (Ω)

)dτ

+ 2e−λn+1t

∫ t

t−1
eλn+1τ ‖g(τ)‖2

L2(Ω) dτ.

Since Qn is a projection on H1
0 (Ω) and (3.22) holds, we get

2e−
λn+1

2

∫ t

t−1
‖Qnu(τ)‖2

H1
0 (Ω) dτ ≤ 2e−

λn+1
2

c1

c2
r0(t)2.

Using (3.24) we also have

2C6e
−λn+1t

∫ t

t−1
eλn+1τ (1 + ‖u(τ)‖2p−2

H1
0 (Ω)

)dτ

≤ 2C6λ
−1
n+1

(
1 + eλ1(p−1)r0(t)2p−2

)
.

Concluding we obtain

‖Qnu(t)‖2
H1

0 (Ω) ≤ 2e−
λn+1

2
c1

c2
r0(t)2+ 2C6λ

−1
n+1

(
1 + eλ1(p−1)r0(t)2p−2

)
+

+2e−λn+1t

∫ t

t−1
eλn+1τ ‖g(τ)‖2

L2(Ω) dτ = An(t) + Bn(t) + Cn(t).

(3.25)

Note that An(t) → 0 and Bn(t) → 0 as n →∞ uniformly w.r.t. us ∈ D(s).
To show that the same holds for Cn(t), we fix ε > 0 and choose 0 < δ < 1

such that

2
∫ t

t−δ
‖g(τ)‖2

L2(Ω) dτ <
ε

2
.

We also choose n0 = n0(ε, t) ∈ N such that for n ≥ n0

2e−δλn+1e−λ1(t−δ)

∫ t

−∞
eλ1τ ‖g(τ)‖2

L2(Ω) dτ <
ε

2
.

These and the fact that λn+1 ≥ λ1 imply

Cn(t) = 2e−λn+1t

(∫ t−δ

t−1
+

∫ t

t−δ

)
eλn+1τ ‖g(τ)‖2

L2(Ω) dτ ≤
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≤ 2e−λn+1t

∫ t−δ

t−1
e(λn+1−λ1)τeλ1τ‖g(τ)‖2

L2(Ω)dτ + 2
∫ t

t−δ
‖g(τ)‖2

L2(Ω)dτ < ε,

which shows that Cn(t) → 0 as n →∞ uniformly w.r.t. us ∈ D(s).

We have shown that for any D̂ ∈ D and t ∈ R
∃s0=s0(D̂,t)<t∀ε>0∃n0∈N∀n≥n0∀s≤s0∀us∈D(s) ‖QnU(t, s)us‖H1

0 (Ω) < ε.

Hence there exists t0 = t0(D̂, t) ≤ min{TD̂,t, s0(D̂, t)} such that

∀ε>0∃n0∈N∀n≥n0(I − Pn)
(
γt0(D̂, t)

)
⊂ BH1

0 (Ω)(0, ε).

Recall that Pn : H1
0 (Ω) → Vn is a projector, where Vn is a finite dimensional

subspace of H1
0 (Ω) and γt0(D̂, t) ⊂ B0(t), which is a bounded subset of

H1
0 (Ω). Hence

Pn

(
γt0(D̂, t)

)
is bounded in H1

0 (Ω).

3.7. (L2(Ω) − H1
0 (Ω)) pullback D-attractor. We apply Corollary 2.17

and obtain the existence of the (L2(Ω)−H1
0 (Ω)) pullback D-attractor.

Theorem 3.4. Let N = 1, 2, 2 ≤ p < ∞ or N ≥ 3, 2 ≤ p ≤ 1 +
N

N−2 . Under the assumptions (3.3), (3.4) on f and for g ∈ L2
loc(R;L2(Ω))

satisfying ∫ t

−∞
eλ1τ ‖g(τ)‖2

L2(Ω) dτ < ∞, t ∈ R,

the process for the problem (3.1), (3.2) possesses (L2(Ω)−H1
0 (Ω)) pullback

D-attractor with the universe
D = {D̂ = {D(t) ⊂ L2(Ω): t ∈ R} :

lim
s→−∞

eλ1s sup{‖u‖2
L2(Ω) : u ∈ D(s)} = 0}.

(3.26)

It is given by
A(t) = ωH1

0 (Ω)(B̂0, t), t ∈ R.
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