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ABSTRACT 

The image data collecled by !he JERS-l OPS, SPOT and AVHRR systemS are af· 
feeled by a variety of periodic (coherent) noise problems. which can be severe in many cases. This paper 
examines some of these defects and also describes and evaluates a series of methodologies to recover 
panially or totally the information contained in these data by means of: (i) filtering in the spatial domain 
(convolution filters), (ii) Principal Components Analysis (PCA) and (iii) filtering in the frequency domain 
(using Fast Fourier Transforms) 

Filtering in !he spatial domain l15ingrelatively small convolution filters can be suc­
cessfully applied 10 tackle elementary periodic noise problems. However, variations of!heoretically effi­
cient kernels experimented in this study were only able to minimise !he effect of such complex noise 
structuresattheexpenseofsignificantmodificationorcomplelelossofimpoMant raw image data. 

Principal Component Analysis ITalIsfonns the data so !hat the noise component is 
cast into one or more of the high-order principal components. Our experiments show that !his technique 
is able tocoofine!he noise in the higher order PCs. but a significant amount of residua I noise was present 
in the low-order components. 

Filtering in the frequency domain proved to be a suitablc technique to achiev eimage 
resto/"lltion whilst preserving most of the raw scene information intact. Conventional Fourier operators 
like the Notch Filter and the Low-pass Elliptically S}1lUIlctric Filler (with a Gaussian-shaped intensity 
profile) can tackle the problems with some noisy images quite reasonably. However. such filters are un­
able to recover images on which the amplitude of the noise varies heterogeneously producing a series of 
impulses from low to high frequencies. Both the Zonal Notch Filter {based on the difference of the Fou­
rier spec!ra of two channels) and the Synergistie Filter (which relies on th econvoluliontheorem)arede­
signed to contour this problem. These are interactive restoration methods that can successfully eliminate 
or minimise the effects of multiple two-dimensional periodic structures superimposed on both multi-chan­
ncl and single channel data, respec1ively. 

RESUMO 

Dados digitais coletados por divel"$os sensore5 orbitais (e.g .. JERS-t OPS, SPOT e 
AVHRR) slo comwnente afetados par ruldos periOdicos (coerentes). Rufdos periOdicos s!o produzidos 
por elTos de jnstrumenta~ao elou f1utua~6es c1etronicas nos senson:s e acarretam problemas no 
processamento e interpreta~ao de imagens digitais. Para que dados ruidoso! possam ser melhor utilizados 
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e eS5enciai que 0 mido presente nestes scja ,atcnuado ou eliminado, Estc artigo ,examina os ruid,os 
tipicamcntc presentes em lDlagen, de sensonamento remoto, abordando wna sene de metodologlas 
altemativas para r~ cupera~~o parcial ou total da infonna"ao contida nestes dados_ As metodo!ogias 
investigadas comp,eendem: (i) filtragem no dominio espacial (filuos de convolu(j'ao); (ii) analise por 
Principals Componentes (APC): e, (iii) filtragens no dominio de frequcncias, utilizando--se Transformadas 
de Fourier 

A filtragem no dominio espacial, por meio de filtros de convolu~ao relativamente 
pequenos e velozes, pode ser aplicada com sucesso na minimiu"ao de mfdos periOdicos em imagens de 
senroriamento rcmoto, Entretamo, a grande maioria dos filtros espaciais classicos disponiveis mo,rra-se 
incapaz de atenuar midos cOlllplexos sem alterar em demasia 0 sinal cia imagem 

A analise por Principals Componemes (PCs), por sua vez, reaJiza uma 
transfonna"ao nos dados de forma que 0 ruido e alocado em uma ou mais pes de maior ordem. Nossos 
experimentos indicam que muito embora esta tecnica seja capaz de isolar boa parte do roido nas pes de 
maior ordem, urna grande quantidade de ruido residual ainda pennanece nas primeiras PCs 

A filtragem no dominio de frequencias, utilizando-se (Iperadores Fourier, constitui­
se na mats podewsa ferramenla para a filtragero de ruidos periOdicos e recupera~~o de imagens de 
sensoriamcnto remot(l mid(lsas. Neste proccsso, 0 ruid(l pcriOdico pocle ser climinado seictivamente scm 
perdaouroodifica~liodosinaL Mf!todostais como os filtros Fourier sintonizaveis classicos (note hfillers) 
e (IS filtros Fourier passa,baixa elipticamenle simetricos (com wn perfil de intensidade gaussiano) podem 
ser uliliUldo~ na recupenl.~ao dest" lipo de dado; ruidoso;_ Enlretanto, eSles melodos sliO limirados, 
principalmentequandoosintervalosdefrtquenciaassociadosaosruidossesuperp?lemaquelesocupados 
pclo sinal da imagem (neste casos, a energia relativa ao ruido mostra-se miSlurada II energia 
correspondente ao sinal em regi()es de baixa frequencia), 0 que tipicamente ocorre em imagens de 
senroriamemo remoto. As lecnicas aqui apresemactas, denominadas Filao Sintonizavcl Zonal (Zonal 
No/ch Filler' envolvendo a subtra"ao do espectro Fourier de dUM bandas espectrais distintas) e 0 
Metodo Sinergistico (compreendendo "aria~oes do uso do temerna da convolu"ilo), sao tecnicas 
adequadas e capazesdeatenuaroueliminarosefeitosproduzidosporruidosperiOdicosbidimensionais 
compJexos,supcrimpostosaosinaldcdadosmulti-canaisedecanallinico,respeclivamente 

INTRODUCTION 

The past and currently operational 
satellite and airborne platforms have 
acquired images that are plagued by pe­
riodic noise. These are assembled 
mainly by sensor failures and instru­
mentation errors. Noise artefacts can be 
added to the imagery either erratically 
(e.g., panchromatic High Resolution 
Visible (HRV) Systeme Probatoire de 
/,Obervation de fa Terre (SPOT); land­
sat Thematic Mapper (TM)) or continu­
ously (e.g., Japan Earth Resources Sat­
ellite (JERS-l) OPtical System (OPS); 
Advanced Very High Resolution Radi­
ometer (A VHRR» along the life period 
of a sensor. Since the human vision is 
highly sensitive to structured patterns. 
periodic noise can be particularly dis­
tracting and obstructive in the interpre­
tation of remotely sensed imagery, It 
can also be further enhanced by image 

processing techniques. Suppression of 
its effects is imperative in most cases. 

The literature lacks of a unique 
technique capable of analysing and re­
ducing thc artefacts observed in several 
data from multiple sensors - the avail­
able noise removal and image restora­
tion methods have been developed to 
solve specific imagery problems within 
specific sensors (orbital data: (i) Crip­
pen, 1989 - Landsat TM; (ii) Westin, 
1990 - SPOT; (iii) Warren, 1989; Simp­
son & Yhann, 1994 - A VHRR; (iv) de 
Souza Filho et aI., 1996 - JERS-l OPS; 
airborne data: Rose, 1989 - AVIRIS; 
HUlllmer-1'lillcr, 1990 - TIMS; Pen­
teado el aI. , 1997 - GEOSCAN AMSS 
MKII), That poses problems for data 
handling and use of combined imagery 
datasets. 

Techniques to remove noise or to 



suppress its effects within an image can 
either be applied in the spatial domain 
(standard Cartesian fonn) or in the fre­
quency domain (Fourier transfonn). 
Both approaches as applied to images 
derived from multiple sensors, with 
emphasis on JERS- I data, are briefly 
described and discussed here. In the 
view of its vast potential use, the main 
objective of this paper centres in devel­
oping an optimum method for the cos­
metic removal of periodic noise from 
digital data, despite its source. The al­
ternative method anempted here in­
volves the synergism of standard con­
volution kernels and Fourier operators. 
It is presented in a manner that can be 
customised for most image processing 
packages, not requiring the complex 
mathematical background usually em­
ployed in the implementation of most 
available noise removal methods. 

REMOTE SENSING NOISY DATA 

The data used in this paper com­
prise four sub-scenes of highly COT­

rupted JERS-l OPS, SPOT and 
AVHRR images. Since they compre­
hend the most complex noise structures 
ever seem in commercial satellite data, 
the JERS-l OPS data is used through­
out the paper to illustrate the relative ef­
fectiveness of well-established filtering 
approaches. SPOT and A VHRR data 
are also employed to portray the effi­
cacy and hindrance of the synergistic 
noise removal method. Figures I a, b, c 
and d show these originally noisy sub­
scenes of JERS-l OPS Level-2 channel 
8 data of Eritrea (NE Africa), JERS-l 
OPS Level-2 channel 6 data of Oman, 
panchromatic SPOT 3 HVR 1 Level 1 A 
data of Ghana, and NOAA.9 A VHRR 
channel 3 data of Sicily (Mt Etna). 

The image data collected by 
JERS-J's sensors covering the visible 
(VIS; channels 1,2), near-infrared (NIR; 
channel 3-4) and the short wavelength 
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infrared (SWIR; channels 5,6,7,8) re­
gions are affected by severe noise 
problems. The important narrow SWIR 
channels show the worst defects. Arte­
facts originally introduced by the satel­
lite sensors (unprocessed Level 0 data) 
were exaggerated by the radiometric 
and geometric correction applied by 
NASDA (Level 2 data). These defects 
have a very systematic and specific na­
ture and comprise both across-track and 
along-track stripping. Some noise 
structures are related to real features in 
the scene and distinction between the 
two in the spatial domain is difficult 
(Figs. la, b). A full description of 
JERS- l noise structures can be found in 
de Souza Filho et aI. (1996) and it will 
not be repeated here. 

Periodic to pseudo-periodic noise 
have been revealed within some of the 
SPOT I (e.g., Westin, 1990 and refer­
ences therein), SPOT 2 and SPOT 3 
(Timothy Minor; personal communica­
tion) imagery after pos-Iaunch investi­
gations of the data. Such noise has been 
documented in panchromatic images 
from the first (Fig. Ic) and second High 
Resolution Visible (HRV I e 2) where 
an along-coJumn (along-track) noise oc­
curs. This line-to-line noise is coherent 
along lines, but the amplitude varies 
along columns. Similar noise, but of 
lower amplitude, has also been reported 
for panchromatic images from HRVI , 
where a corresponding noise in the per­
pendicular direction (along lines; across 
track) was also perceived. As con­
cluded in Westin (1990), in all cases, 
the dominant period is two pixels, and 
the amplitude varies slowly over the 
image. This noise was most pro­
nounced during the first year of opera­
tion of the SPOT I , subsequently di­
minished in magnitude and was later 
only a problem in dark scenes with low 
dynamic range. Something similar 
seemed to have occurred with SPOT 2 
and 3. CNES recently confinned that 
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Figure 1- Noisy sub-scenes of (a) JERS-l OPS Level-2 channelS data of Eritrea (NE Africa); (b) JERS-I 
OPS uvel-2 channel 6 data of Oman; (c) panchromatic SPOT 3 HVRI uvel lA data of Ghana 
(gcon:ferenced); (d) NOAA9 AVHRR channel 3 data ofSilicy (MI EUla). 

the SPOT 3 spacecraft, operating since 
Septemberl1993, suffered an unrecover­
able malfunction on November/1996. 
The SPOT I, in orbit since February 
1986, was reactivated on 9 January 
1997, and acquired its first scenes in the 
real-time acquisition mode, ensuring 
continuity of service alongside SPOT 2. 
It is probable that the images as ac-

quired by SPOT I will continue suffer­
ing of the same noise problems reported 
here 

The channel 3 data of the 
A YHRR on the NOAA series of satel­
lites (NOAA 6-12) are contaminated by 
severe instrumentation noise (Waren, 
1989). The signal-to-noise ratio varies 
considerably from image to image and 



its variation between sensors (e.g 
NOAA? versus NOAA 9) can be large 
(Simpson & Yhann, 1994). The chan­
nel 3 noise is highly directionally de­
pendent. When viewed along each im­
age line (horizontal direction), the noise 
varies slowly and is almost coherent 
Along the image columns (vertical di­
rection), however, the noise varies rap­
idly and is almost random in nature 
(Fig. Jd). Simpson & Yhann (1994) 
provided a detailed characterisation of 
channel 3 noise structures and this ...... ill 
not be reproduced further here. In the 
next sections, we describe and discuss 
some of the basic and complex tech­
niques used in noise removaJ ap­
proaches in both spatial and frequency 
domains. 

SPATIAL DOMAIN METHODS 

Algebraic 
One of the simplest techniques to 

remove noise from images is that of im­
age averaging (Castleman, 1979). This 
techrtique relies on the production of a 
cleaned output image by averaging N 
input channels. Although simple to im­
plement, this technique is best used to 
remove random noise. Ideally, it should 
be applied when it is possible to obtain 
images of a stationary scene (i.e., over 
the same geographic region and com­
prising the same waveband). If these 
images are contaminated by an additive 
noise source, the average of multiple 
images can reduce the noise. In the av­
eraging process, the stationary compo­
nent of the image is unchanged, 
whereas the noise pattern, differem 
from one image to the next, builds up 
more slowly in the sum. Our experi­
ence shows that remote sensing studies 
involving temporal analysis can make 
good use of the amount of available 
scenes to perform this algebraic opera­
tion and successfully reduce eventual 
nmdom noise. 
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Convolution filtering 
Modem pipelined processors are 

capable of performing very fast CDnvo­
lution operations. Consequently, a sig­
nificant amount of research has focused 
on the design, implementation, and ap­
plications of finite impulse response 
(FIR) filters for digital image restora­
tion (Strickland & Aly, 1985). 

Convolution filtering is a context­
dependent operation that alters the grey 
level of a pixel based on a weighted av­
erage ofa kernel ofpixeJs (matrix) cen­
tred about the pixel of interest. It in­
volves multiplying individual ON val­
ues in an input image by a box filter 
which contains a matrix of weighted 
values; the product of this operation is 
then used to replace the original image 
ON value at the centre of the matrix. A 
new output image is produced by mov­
ing the matrix over every pixel in the 
input scene. The basis of the convolu­
tion technique has been extensively 
swnmarised in the literature (e.g., 
Drury, 1993), is easily understandable 
and will not be discussed agaln here. 
However, once the convolution basics 
have been grasped, the problem is the 
enormous number of possible kernels 
available. The question is "How to 
choose the weighting factors appropri­
ate for the noise removal challenge at 
hand?". An optimal approach usually 
considers the relation between convolu­
tion and Fourier filtering (Gonzalez & 
Wintz, 1977). This implies manipula­
tion of data in the frequency domain, 
thereby defeating the aims of this sec­
tion. Where frequency domain re­
sources are unavailable, the other possi­
ble way to tackle major noise problems 
involves standard convolution kernels 
and their variations 

The beauty of convolution filter­
ing is that it is very flexible as both the 
size and the weightings of the convolu­
tion kernel (matrix) can be easily 
changed. Varying these parameters 
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means that the effect of the filter on the 
output image can be controlled. In 
practice convolution filters are used to 
either enhance or suppress edge infor­
mation (high frequencies) in an image; 
these are respectively knovm as high- or 
low-pass filters. Noise removal by con­
volution tends to use low pass filters as 
these suppress the visibility of noise 
artefacts in an image. 

Noise is known to grow ·, ... ith in­
creasing spatial frequencies (Castleman, 
1979). If this is correct, its effects can 
be minimised by averaging the pixel 

KERNEL! 

[I I I] ~ I 1 I I I I 

KERNEL 2 
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1 I 111 
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Tests on images corrupted by both 
periodic and random noise (e.g., JERS-
1 data) show that this type of filter does 
suppress some of the random noise but 
this is achieved at the expense of sup­
pressing high frequency infonnation 
(such as topographic edges and tonal 
boundaries). The output image appears 
slightly blurred. The mean filter fails to 
minimize the effects of periodic pat­
terns. Broader kernels (such as 5x5 or 
larger) can provide a considerable com­
pression of frequencies but at the ex­
pense of even larger levels of blurring. 
The noise observed in channel 3 
A VHRR images can be reasonably re­
solved by convolving the image with a 
5x 1 averaging kernel (Kernel 4) (Simp­
son & Yhann, 1994); in this case the 
high frequency variation along each 
column is reduced, thereby reducing the 
overall noise in the image. Restored 
channel 3 images still show, however, a 
significant amount of remaining low 
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values of an image, causing them to be 
more homogeneous. Low pass kernels, 
such as mean filters are designed to per­
fonn this sort of matrix algebra. This 
mean filtcr replaces the central ON 
value with the average ON of the sur­
rounding 8 pixels (for a 3x3 kernel). 
This has the effect of suppressing any 
high frequency variations, i.e. those as­
sociated with random noise, within a 3 
x 3 image window (Castleman, 1979). 
Mean filters can be composed of as 
many elements as desired by the user, 
but usually the following are employed: 

KERNEL 3 KERNEL 4 

frequency noise. 

I 

~I 
51 

Trials to concomitantly reduce 
noise and avoid unsatisfactory blur can 
be carried out by simply varying the 
outer weights of a mean matrix. Use of 
scale factors on the kernels are not 
suggested as they may significantly 
modify the statistical integrity of the 
image data. The three by three filter is 
the smallest odd kernel size that can be 
used and gives minimal smoothing. 
We tested a multitude of kernel varia­
tions from the literature in noisy image 
data collected by a multitude of sensors. 
and the most efficient are commented 

All kernels shown above are able 
to reduce the effects of noise presented 
by JERS-I. SPOT and A VHRR im­
agery. Kernel 6 and 8 provided the best 
overall results. It is important to em­
phasise, however. that these kernels 
should be used as a basis for experi­
mentation rather than taken as 'frozen' 
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KERNELS KERNEL 6 KERNEL 7 KERNEL 8 

KERNEL 7 KERNEL 8 KER.,'\[EL9 

designs. That is because noise struc­
tures may vary from both channel to 
channcl and scene to scene, and there­
fore , specific filters may be selected to 
minimise specific interference pallerns. 
We also noted that although these small 
kernels can decrease the impression of 
the noise, they correspond to crude fil­
tering functions with limited control on 
spalial frequencies. Consequently, noise 
structures "ill still be present in the fil­
tered images to a certain degree, even if 
not causing evident signal obstruction. 

An alternative to the mean filter is 
the median filter (Kernel 3) which re­
places the central image ON value with 
median value derived from the sur­
rounding 8 pixels. Tests show that the 
median filter removes isolated random 
noise as well as the mean Iilter, al­
though less image blur is introduced. 
Moreover the median filter is capable of 
dissembling some of the periodic noise 
effects. it does not remove it. 

The convolution kernel operations 
can be enhanced by the introduction of 
an algorithm which decides whether a 
pixel requires replacing or not, de­
pending on its deviation from the sur­
rounding pixel values. If a pixel devi­
ates more than a given threshold value, 
it is then replaced; otherwi~ it remains 
unchanged. Using an algorithm such as 
this ensures that only the minimal 

amount of image pixels are changed, 
thereby helping to preserve image de­
tail. An exampLe of this algorithm is 
given by Schowengerdt (1983). A simi­
lar approach is referred to in the 
literature as adaptive filtering (e.g., Peli 
& Lim, 1982; Eliason & McEwen, 
1990). These filters are designed for 
best removing speckled noise, bit errors, 
dropout errors and particular bad lines 
or columns of data, where the sur· 
rounding data is assumed to be valid. A 
drawback is that this technique relies on 
the fact that the pixeLs surrounding a 
noisy one are themselves good. Unfor­
tunately this is often not the case, par­
ticularly with the periodic structures ob­
served in JERS-l, SPOT and AVHRR 
noisy data, which usually affect con­
tiguous pixels and vary differently along 
image lines and columns. In such cir­
cumstances, adaptive filters will in gen­
eral replace each pixel '-vith the pixel 
values averaging along lines only. This 
cannot reduce the noise impact in any of 
the data employed here without their 
significant smoothing and loss of spatial 
detail. 

Principal components analysis 
Background 
The principal components (PC) 

transformation is a multivariate statisti­
cal technique which selects uncorrelated 
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linear combinations (eigenvector load­
ings) of variables in n-dimensional 
space in such a way that each succes­
sivelv extracted linear combination, or 
principal component (PC), has a smaller 
variance (Singh & Harrison, 1985). Its 
main advantages of reducing data 'di­
mensionality' and decorrelating highly 
correlated images are well knov.-n 
(Ready & Wintz, 1973). 

The statistical variance in mul­
tispectral images is related to the spec­
tral respome of various scene attributes 
and it is also influenced by the statisti­
cal dimensionality of the image data. 
When multispectral imagc channels arc 
treated as variables and subjected to PC 
transformation it follows that the or­
dering of the principal components is 
influenced both by the spatial abun­
dance of the various surficial materials 
and by the image statistics. In this case, 
it is possible to take advantage of the in­
fluence of scene statistics, which can be 
both measured and adjusted, in order to 
'force" the transformation to provide in­
formation on the spatial distribution and 
relative abundance of specific image 
attributes (Loughlin, 1991), these being 
either useful information about rocks, 
soils and vegetation or unwanted arte­
facts such as noise. 

Multichannel sets, like the noisy 
JERS-l data, when subjected to PC 
transformation are ordered in a such a 
way that the first PC contains the 
maximum possible proportion of the 
variance in the original data (i.e., inter­
band correlated information), with later 
components accounting for successively 
smallcr amounts of the remaining vari­
ance (interband poorly correlated in­
formation) . Fundamentally, increasing 
order PCs have progressively lower sig­
nal-to-noise ratios (SNR). In geological 
remote sensing, this means that lower 
PC images have less geological vari­
ance rather than variance associated 
with sensor-derived defects and atmos-
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pheric effects. The noise variance of a 
scene is then approximated by the low­
est eigenvalue and is commonly fOWld 
in the IO"l.vest order PC image under 
analysis; though Green et al. (1988), 
TO\\'llsend (1984) and Drury & Hunt 
(1988) pointed out that the decrcase of 
SNR as a function of increase in the 
PCs order may not always occur so 
steadily. 

These principles being stated, it 
becomes clear that in multichannel im­
age analysis, the inclusion of all chan­
nels in the PC transformation increases 
the likelihood that any unwanted data 
are isolated by the process, provided of 
course that the noise structures are 
poorly correlated between channels. If, 
after the forward transformation, the 
noise is largely isolated from image sig­
nals among the PCs, then it can be re­
moved substantially by sening the noisy 
PCs to a constant value prior to the re­
verse transform back to wavebands. 

The forward transformation 
Table I lists (1) the image statistics, (2) 
the variance-covariance matrix, (3) the 
cigcnvalues (which give an indication 
of decreasing variance in successive 
principal components) and, (4) the 
eigenvectors loadings (linear combina­
tions of weighted input images in the 
PCs) of a fOf\vard PC transformation 
based on the variance-covariance rna 
rrix, for a selected set of all seven "raw" 
JERS-1 OPS channels acquired over 
Eritrea. Figure 2a shows PCl, PC5, 
PC6 and PC7 resulted from the trans­
formation. Figure 2b are the same PCs 
but convolved \\ith textural and direc­
tional filters, thus showing noise com­
ponents more clearly. 

Figure 3 is a graphical representa 
lion of the eigenvectors obtained from 
PC transformation on thc raw sub­
scene. Before visual analysis of the PC 
imagery, careful examination of the ei­
genmatrix can reveal some important 
information about the structure of the 
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Table I - PC transfonnation on the seven reflective channels of the northern Eritrea 
JERS-l subscene. Raw data; no stretch applicd prior to the transfonnation 

STATISTICS 
DATA OP51 01'52 OP53 OP55 OPS6 OP57 01'58 

52.44 
05.17 

62.03 
08.06 

49.58 
07.49 12.21 

44.30 
06.61 04.63 

VARIANCE - COVARIANCE MATRIX 
OP51 OP52 OPS) OPSS OPS6 OPS8 

OPS2 38.00 64.95 
OPS3&4 31.67 52.21 56.05 
OP55 40.46 76.08 66.16 149.17 
OP56 14.63 29.75 22.88 66.56 43.73 
OP57 17.95 36.16 28.74 78.41 46.35 56.46 
OPSS 14.09 25.71 19.64 48.27 24.09 27.65 

s2 ~ 418.48(sumofvarjance s2) 

PC EIGENMA TRIX BASED ON COVARIANCE STATISTICS 
EIGENVECTOR MATRIX EIGENVALUES 

OP51 OPS2 OPSJ OPS5 
PCl +0.21 ·.iU8 +0.33 -l-{l.65 
PCl -o'{}.46 -l-{l.50 -0.20 
PC) +0.33 -0.36 -0.19 ~.64 

PC. -0.24 -0.31 -l-{l.7 1 -0.22 
PCS -0.02 -0.28 -l-{J.31 -0.23 
PC6 -0.05 «>.00 -l-{J.Ol -0.07 
PC7 ---0.80 -0.57 -0.02 +0,10 

;l.. - 418.488 (Slim of eigenvalues) 

original data and the results of the trans­
fonnation. It can be shown that al­
though the sum of the variance of the 
original channels (diagonaJ line of the 
variance-covariance matrix of Table 1) 
is equal to the sum of the variance of 
the principal componeOls (their eigen­
values). the variances are now very dif­
ferent for cach new variable PC (Davis, 
1973). Therefore, following one of the 
PCA's basic premises, it is evident that 
there is no loss or addition of infonna­
tion or noise during the process but just 
a reorganisation of the data set (Davis, 
1973). Each eigenvalue can be used to 
assess the percentage of the original 
scene variance making up successive 

01'56 OP57 OP58 )..( V.j 

-l-{J.30 +0.36 +0,22 331.68 79.25% 
-0.40 -0.42 -0.11 55.Q1 13.14% 
+0.40 -l-{l.38 +0.05 12,63 3.02% 
+0.21 +0.30 -0.39 
+0.10 -0.17 -tQ.85 4.24 1.01% 
-0.73 -l-{J.65 -tQ.20 3.19 0.76% 

-tQ,07 -0.11 0.64% 
)..0/.- 100 

pes. In addition, it is possible to 
roughly approximate the contribution of 
each band to the individual PC images, 
by examining the eigenvectors for the 
original bands. 

From Table 1 and Figure 3 it is 
apparent that the first row of eigenvec­
tors making up the first PC are all posi~ 
live. PCI accounts for 79.25% of the 
total variance for the raw data PC trans­
form. Overall brightness, or albedo, is 
responsible for the strong correlation 
between multispectral image channels 
and PCA has effectively mapped this 
into PC I. The statistical dimensionality 
of the data (related to sensor gain and 
offset as well as spectral differences and 
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(a) 

(b) 

Figure 2 - (a) Examples of pes calculated on tlle basis ofa\11ERS-l OPS channels of a selected subscene 
in Eritrea (Figure la), PC1 , PCS, PC6 and PC7 correspond to the NW, NE, SW pod Sf quadra"t~, 

respectively_Ch) lltu.\tration ufthe same PCS of Figure 2a, to whicil texture fiftenl were a pp]icdtodisplay 
the noise c01llponeuts evidently. PC1, PCS, PC6 and PC7 correspond 10 tile same quadrants !Ill in (a). 
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DoPS7 I!!!lIOPSS 

Figure 3 - Graphical representation of thc eigenvectors from a 1024 xl024 J£RS-I raw sub-Kcne of 
Eritrea 

noise defects), and in particular, the 
magnitude of the standard deviations 
(SO), has great influence over the actual 
weighting of the original channels 
mapped into successive components. 
Examination of the magnitude and sign 
(i.e. positive or negative) of eigenvector 
loadings also gives an indication of 
which spectral properties of vegetation, 
rocks, soils and image defects are re­
sponsible for the statistical variance 
mapped into each PC, and this is the ba­
sis for the noise isolation approach here 
examined. 

In the rav,' data transformation of 
Table I the large SO for OPSS (where 
noise is almost absent) is responsible 
for that channel's dominance in PCI. 
Low SO of OPS 1 (an important host of 

across-track noise) is largely responsi­
ble for OPS1 '5 very low contribution to 
the same PC. This should mean that 
PC 1 has the higher signal-Io-noise ratio 
(SNR) within the transform compo­
nents. However, small contributions of 
OPS3 ('rich' in across-track striping) 
and OPS6 and OPS7 (the 'richest' in 
along-track noise) to PCI will contrib­
ute some diffuse horizontal striping and 
diagonal patterns to this PC. This is 
confirmed in the enhanced PC I image 
of Figure 2b. 

Eigenvectors loadings for PC2 of 
Table 1 indicate that it describes the dif­
ference between the visible channels 
(OPSI, OPS2 and OPS3&4) and the 
SWIR channels (OPS5, OPS6, OPS7, 
OPS8). Image attributes which have 
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highest influence in the visible spectral 
region will appear on PC2 as the bright­
est pixels (positive eigenvectors) and 
those with highest influence in the shon 
infrared will appear as darkest pixels 
(negative eigenvectors), The overall 
loading for both VN1R OPSI-OPS3&4 
and SWIR OPS6-7 channels are respon­
sible for the appearance of some noise 
as across and along-track components, 
respectively. 

Eigenvectors loadings for PC3 in­
dicate that its image is decreasingly 
dominated by OPSS, OPS6, OPS7 and 
OPS8 infonnation. This PC has also 
some imponant loadings coming from 
OPSI and OPS2. The relative smaller 
proponion of VNIR infonnation 
(OPS3&4) on PC3 when compared with 
PC2 is responsible for less across-track 
striping in the fonner. The OPS6 and 
OPS7 components on PC3 have slightly 
smaller values than in PC2, and there­
fore, the along-track noise in PC3 can 
be expected to decrease. However, the 
opposite relation is observed in the im­
agery (not shown) where PC3 shows a 
fine and tightly spaced subvenical 
striping. This 'noise enhancement' ef­
fect has been interpreted to be associ­
ated with the positive sign assigned to 
OPS6 and DPS7 eigenvectors loadings 
on PC3, as features associated with 
these channels will be shown as bright 
pixels. 

Eigenvector loadings for PC4 
(Fig. 3) suggest that it is dominated by 
bright OPS3&4 scene anributes (posi­
tive eigenvector), Therefore, as a result, 
some obstructive horizontal striping can 
be expected in this PC. OPSI-OPS2 
and OPS5-0PS8 contributions are ei­
ther insignificant or represented by 
negative weights. The OPS6-0PS7 
contribution to PC4 is lower than that of 
PC3, but again their positive eigenvec­
tors are responsible for prominent ap­
pearance of some distinct anefacts. 

So far, the first four PC images 
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comprise 97.5S% of the total scene 
variance from all seven channels. It has 
been demonstrated that all the compo­
nents variably contain infonnation 
about the along and across-track inter­
ference patterns. However, none of 
these PCs show noise obtrusiveness to 
such a degree of severity as that present 
in the "raw" OPSI, OPS6, OPS7 and 
OPSS channels, but actually show good 
geological data. Therefore, the re· 
maining three PCs can be expected to 
contain concentrated infonnation about 
those most significant noise anefacts. 

The fifth PC eigenvectors show a 
striking positive dominance of OPSS 
and, as a result, the typical noise pattern 
associated with OPSS has been mapped 
into PC5 (Figs. 2a, b). PC6 has almost 
no data from OPSI-5 but incorporates 
high eigenvector values for both OPS6 
and OPS7, also having some positive 
contribution coming from OPSS. Due 
to this fact, it is the "noisiest" PC of the 
transformed data (Figs. 2a, b). In· 
versely, PC7 contains significant con­
tribution from OPSI and OPS2 whilst 
infonnation from all other channels are 
irrelevant. As a consequence, horizon· 
tal striping is accumulated in this last 
PC (Figs. 2a, b). 

The most imponant feature of this 
PC transfonnation is that the procedure 
was able to concentrate noise in the last 
two components, as anticipated. How­
ever, these two PCs contain information 
almost exclusively related to the very 
noisy OPS channels 1-2 and 6-7. Table 
2 is a correlation matrix calculated on 
the basis of the variance-covariance 
matrix of Table 1. Correlations be· 
tween DPS 1 and 2 and OPS 6 and 7 are 
the highest within the matrix. The cor­
relation matrix also shows that the 
VNIR channels have a high inter-cor­
relation and a much lower correlation 
with the SWIR channels; and vice­
versa. These facts explain why the ane­
facts are concentrated independently in 
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Table 2 - Correlation coefficients (r) matrix derived from the covariance statistics 
displayed on Table 1. 

DATA OPSI OPS2 OPS3&4 
OPSI 1.0000 
OPS2 Q.ill2 
OPS3&4 0.8178 1.0000 
OPSS 0.6409 0.7730 0.7234 
OPS6 0.4281 0.S584 0.4621 
OPS1 0.4623 0.S973 0.S109 
OPS8 0.5886 0.6889 0 .5663 

r ij == COVij I SIDi· STOj 

the last two PCs. 
Tbe Inverse Transformation 
The rationale of removing un­

wanted infonnation in PC images by 
perfonning the inverse transfonnation is 
not new (Schowengerdt, 1983; Orury& 
Hunt, 1988; Rothery & Hunt, 1990; 
Hunt, 1991). Discarding noisy PCs 
before reverse transfonnation can 
remove some of the effects of interfer­
ence patterns and consequently, im­
prove the data's SNR. The unwanted 
PC data discard can be optionally 
achieved by either resetting all pixels of 
the unwanted PC (s) to zero or to a con­
stant value; usually 127 (Rothery & 
Hunt, 1990). 

The forward transfonnation analy­
sis highlights PC6 and PC7 as the noisy 
PCs to be caSI off. Results obtained 
from using their images set at ON 127 
or by completely omitting them from 
the inverse transfonn are fairly similar, 
although the fonner proved to retain a 
slightly better grey level gradient for the 
inverse transfonned imagery. 

The results from applying PC 
transfonnation to JERS-l images 
showed several drawbacks. The for­
ward PC transfonnation confined along 
across-track noise in the higher order 
PCs, but a significant amount of resid­
ual noise remained in the low-order 
components. Analysis of the variance­
covariance matrix and correlation ma-

OPSS OPS6 OPS1 OPS8 

1.0000 
0.8247 1.0000 
0.8550 Q.llil 1.0000 
0.8538 0.7871 0.795\ 1.0000 

trix extracted from the data indicates 
that this is probably because the noise 
defects, although similar in appearance, 
differ structurally from channel to 
channel, and hence, have a low degree 
of correlation in most bands. As a con­
sequence, the transfonnation is unable 
to exclusively relegate the unwanted 
anefacts just to the higher order com­
ponents. Ignoring the noisiest PCs be­
fo re data decorrelation does improve the 
image quality after the data are con­
verted back to wavebands. However, as 
previously stated, noise is still identified 
in all channels, indicating this technique 
to be partially useful, but unsatisfactory 
when compared with frequency domain 
methods. 

Variants of the fundamental PCs 
transform, such as standardised PCs 
(Singh & Harrison, 1985; Drury & 
Hunt, 1988), selective PCs (Chavez, Jr 
& Kwarteng, 1989), Gaussian-equaJised 
raw channels (Loughlin, 1991), were 
also tested; the results on noise isolation 
all being basically the same. The noise 
removal methods based on the 
maximum noise fraction transform and 
minimum/maximum autocorrelation 
factors (Green et aI., 1988), were not 
considered here; firstly, because the 
noise was cast to the last components by 
the standard PC transform; secondly, 
because the method proposed by Green 
et al. (1988), also involves filtering 



prior to the inverse transformation back 
to geographic space, offering no practi­
cal advantage. Another drawback to the 
PC-based methods applied to noise re­
moval is their time and computational 
requirements; they necessarily involve 
forward and reverse transformations. 

FREQUENCY DOMAIN METH­
ODS 

Background 
An alternative approach to noise 

removal is to consider the noise com(XJ­
nents associated with images in the fre­
quency domain. Images are trans­
fonned into the frequency domain using 
the Fast Fourier Transform (FFT). 
Once transformed into the frequency 
domain the magnitude component of 
the FFT can be used to help visualise 
the spatial frequency attributes of com­
plex noise artefacts. Filters can then be 
applied in the frequency domain to re­
move noise artefacts before performing 
an inverse Fourier Transfonn (1FT), to 
relurn the filtered image back to the 
spatial domain. The advantage of fil­
tering in the frequency domain is that 
the operation allows the noise compo 
nenl of an image to be easily identified 
and removed, without affecting any of 
the real image information. Such a task 
is always more difficult in the spatial 
domain. 

The Fourier Transform and its Com­
ponents 

One of the simplest cases of im­
age degradation is the occurrence of a 
sinusoidal interference structure su­
perimposed on an image (Gonzalez & 
Wintz, 1977). Such periodic function 
can be broken do\\'ll into its most fun­
damental pieces. i.e. the sum of a series 
of superimposed trigonometric sine and 
cosine functions with different ampli­
tudes, frequencies and phases. This 
representation of a function is termed its 
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Fourier series (Schowengerdt, 1983). 
Figures 4a and 4b show two sinu­

soidal functions of amplitude A, de­
pendent just on a variable X, which can 
be expressed as· 

Eq.l 

f(X) = A*cos(2!t¥) 

Eq.2 

f(X)= A *C<ls(21f2X), 

respectively. 
These correspond to low fre­

quency (long wavelength) and high fre­
quency (short wavelength) sine waves. 
The Fourier Transform of such continu­
ous functions with variable X can be 
defined by the equation: 

E<,.3 

3{f(X)} = F(U) If(X) exp[-2mUX] dX , 

where by Euler's formula exp [-btiUX] 
= cos (btUX) - i sin(21tUX); i is the 
square root of -I and U is the so called 
frequency variable with respect tax. 

An alternative way of represent­
ing F(L~ is in the form of its magnitude 
(or Fourier spectrum) (IF(wI) and phase 
angle (;(U) components, that is: 

E<,4 

F(U)=IF(U~ * e,jwl, where 

E<,' 

I F(U~ '" JR(U) · R(U) + I(U) * leU) , and 

Eq.6 

f(U)= UJ.n -, [1(U) ] 
R(U) , 

R(U) and J(U) being the real and 
imaginary components of F(U). 

Digital images, however, are not 
continuous functions but discrete sam­
pl ings of real scenes into image pixels. 



Hypothetical image analogues of these 
sinusoidal functions are shown in Fig­
ures 4c and 4d, whereas Figures 4e and 
4f express these functions as lines of 
image data. In this case, still consider­
ing one dimension, it is assumed that 
there is a finite number of samples, N, 
and that the sampling is performed at 
regular intervals with a spacing of x. 
Thus the sample points are at nx, where 
n can have values ofO, 1,2, .... , N - I 
The Fourier Transform of N samples is 
defined to be, 

Eq.7 
I N - I 

F(U )= - I!(nx) exp(-2;riunx) 
N •• u 

so that sinusoids in Eq.1 and Eq.2 can 
be re-\\Titten in the form: 

Eq.8 

f(nx)~A.cos(2;r,,), 

and A "cos(2;r n)=A for n=O,I, ... 

Eq.9 

!(nx) = A.cos(2;r2n), 

and A"cos(2:r2n) : A for n : O, I, ... 

However, Eq.7 shows that F(U) is 
still a continuous function, bringing 
problems for computing. To overcome 
this, in the same way that /(X) is sam­
pled, the transformed function can be 
sampled at U '"' leu, for k'" 0, I, 2, 
N-J, with 11= \ 1 Nx, thai is, 

Eq.lO 
I ~· -I 

F(ku) __ L:!(nx)exp(- 2;rilm l N] 
N • •• 

It can be shown by direct substi­
tution of Eq. 8 into Eq. 10 that: 

F(ku)=O for 1:.<1 or b, - l 

F(lcu)=A I 2 for k=1 or k : -I 

F(lcu)=A / 2 
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F(fcu)=A for k : O 

F(ku) = O for hoO 

and by direct substitution of Eq. 9 into 
Eq. iOthat: 

F(ku) . O for fc"*2 or k .. - 2 

F(ku)=A I 2 for fc=2 or k=-2 

IF(ku~- A / 2 

Figures 4g and 4h show schematic 
diagrams of the magnitude component 
for both cases. They look very similar, 
except that the spikes are positioned al 
higher values as the sinusoid assumes 
more cycles per given distance interval. 
Note that he FIT axes in the diagrams 
are the '\~Tong" way round when com­
pared with the conventional arrange­
ment (see Gonzalez & Wintz, 1977; 
Schowengerdt, 1983), but this is an ar­
bitrary convention. We use such "un 
usual" ordering because the bulk of our 
FIT code runs much faster in that way. 

An image in the spatial domain 
represents variations in energy levels 
over geographic space whilst the Fou­
rier transfOITIl of this image represents 
these energy levels with regard to 
variations of frequency. These fre­
quency variations can be viewed either 
via as the plots of Figures 4g and 4h, or 
more usefully in image fonn (intensity 
function), by looking at the intensity 
values in the magnitude plot produced 
by the FIT. Intensity or brightness in 
the magnitude plot is proportional to the 
amplitude of IF(ku)I. Figures 4i and 4j 
schematically represent such intensity­
function plots where the spots along the 
ku axis consist of a single frequency in 
the input image in the nx direction; the 
closer the spots to the origin the lower 
the frequency. Consequently the Fou­
rier Transform of a sinusoid corre­
sponding to a pair of spikes (or bright 
spots in a computer screen) will have a 
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Figure 4 - Fundamentals of the frequency domain (see leXI for explanalion). The graphics are only 
skelches and donol represenl synlhetic imagesofsenoid.s. Also nOie thai the axis of the images in the 
frequency domain are invened in relation 10 those in the spatial domain. That is the standard that we fol­
lowinthcpapcr. 



distance from the origin which is pro­
portional to the frequency of the origi­
nal sinusoidal function 

A magnitude plot, therefore, dis­
plays spatial frequency varialions radi 
ally from a central origin of zero fre­
quency (Fig. 5). High spalial frequen­
cies or very fine gratings (Le. short 'run' 
lengths, comprising a small number of 
image pixels) correspond to points fur­
thest away from the origin, whereas low 
spatial frequencies or large gratings (i.e. 
long 'run' lengths, comprising a large 
number of image pixels) correspond to 
points closest to the origin (Fig. 5)_ The 
majority of the image detail occupies a 
broad zone, centred about the zero fre­
quency point or origin (centre of Fig. 5). 
The shape and extent of this zone will 
vary on all magnitude plots as it de­
pends directly on the distribution of 
spatial frequencies in the real image. 
For example, an image of a relatively 
homogeneous rcgion with few edges 
(either spectral or topographic) would 
plot close to the magnitude origin at 
low frequencies, whereas a rapidly 
changing region with numerous edges 
would plot further away from the origin 
at higher frequencies. A circular shape 
to this central zone represents a random 
distribution of edge infonnation in the 
original image. A strong preferred 
orientation of features in the original 
image data would cause this region to 
be elongated about the central origin. 

A regular periodic structure in an 
image, such as noise (Figs. 4a and 4b) 
needs only a few gratings to represent it 
and will have a Fourier transfonn were 
an of the energy is constrained in a well 
defined bright spot (or spots) in the 
magnitude plot (Figs. 4i and 4j). Figure 
4a shows a schematic representation of 
a low frequency sinusoidal function su­
perimposed on an image to produce 
along-track noise. In image tenns this 
low frequency noise would comprise 
long 'run' lengths of image pixels repre-
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Figure 5 - Magnitude plot chracteristic$. 

senting noise in the spatial domain. 
Figure 4i shows that this periodic noise 
produces two spikes in the magnitude 
plot. These are located relatively elose 
to the origin of the magnitude plot. A 
high frequency sinusoidal noise func­
tion (Fig. 4b) also produces along-track 
noise. Displayed as an image, such a 
function is represented by shon run 
lengths of pixels. On the schematic 
magnitude plot (Fig. 4j) this noise is 
represented by two smaller spikes lo­
cated further away from the image ori­
gin at higher frequencies. These spikes 
are "smaller", i.e. lower in intensity 
when compared to those of Figure 4i, 
because the amplitude of the original 
sinusoidal function is less than that of 
the low frequency noise in Figure 4a. 

Introducing a periodic noise com­
ponent in both the x and y directions 
simultaneously has the combined effect 
of producing a diagonal superimposed 
periodic noise structure at an angle 0 to 
the image axis (Fig. 6a). This results in 
the noise spikes in the magnitude plot 
being rotated off axis by the equivalent 
angle (Fig. 6b). The distance of these 
spikes away from the origin is still de­
tennined by the original frequency of 
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the periodic function. Combining two 
different peri<Xlic functions together 
produces a complex noise pattern on the 
image data (Fig. 6c). It also makes the 
magnitude plol (Fig. 6d) more complex 
as it introduces four spikes, two for 
each peri<Xlic function. Spikes A and 
A' represent the low frequency noise 

SPATIAL DOMAIN 

f(nx.my) 

(a) 

(0) 

PeriodOc.rmisesuppressiontechn"lues 

equivalent to that of Figure 4a whilst 
spikes B and B' represent the slightly 
higher frequency noise equivalent to 
that of Figure 4b. Note that A and A' 
have a higher intensity than B and B' 
(schematic represented as larger spots) 
because of the higher amplitude of their 
original input function 

" 

FFT 

FREQUENCY DOMAIN 

F(Ku.lv) 

Origin / 

" ,../ Noise Spike 

/~ 

(b) 

(d) 

Figure 6 . Periodic complex noise (see text for explanation). The graphics are only sketches and do not 
~presem synthetic images ofsenoids_ Also nOle lhal the axis of the images in the frequency domain are 
mverted in relation to those in the spati~1 domain_ That is the standard that we adopted in the paper. 



These simple schematic exampks 
(Figs. 4-6) show how image noise can 
be regarded as the superimposition of 
different sinusoidal functions, with dif­
ferent amplitudes and frequencies , par­
allel to one or both image axes. Varying 
anyone of these function components 
results in a very distinct noise structure 
These examples also demonstrate how 
variations in the sinusoidal function are 
represented as variations in the magni­
tude plots. Considering these examples 
first helps when trying to understand the 
complex structures found in real noisy 
image data. Although, without a thor­
ough knowledge of all of the processes 
which have affected corrupted image 
data from the time of acquisition, 
through pre-processing to final product 
distribution, it may be impossible to ex­
plain all of the features seen in a mag­
nitude plot. However, the majority of 
noise artefacts associated with JERS-J 
OPS, SPOT and A VHRR data produce 
features in the frequency domain, which 
can be recognised as being distinct from 
the image data 

Periodic (Coherent) Noise Removal in 
The Frequency Domain 

As already mentioned the major 
advantage of transforming images into 
the frequency domain is that the peri­
odic noise component of an image can 
be distinguished as features independent 
of the real image data. This means that 
processing in the frequency domain can 
be used 10 either suppress or totally re­
move systematic noise defects. Re­
moval of noise is accomplished by fil­
tering the magnitude plot before per­
forming the Inverse Fourier Transfor­
mation (lFT) to return the data back to 
the spatial domain. 

Although this may sound simple it 
is in fact quite a difficult task to per­
form. This is because the noise compo­
nent can be masked or removed by nu­
merous techniques and the suitability of 
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anyone technique will depend on the 
nature of the noise being removed. 
Care also has to be taken when proc­
essing in the frequency domain to en­
sure that minimal real image informa­
tion is lost or removed when masking 
the noise component. Four approaches 
to noise removal in the frequency do­
main are discussed and demonstrated 
here. 

Notch Filters 
The simpiest processing technique 

available to remove periodic noise from 
magnitude plots is that of Notch filter­
ing. This technique relies on the inser­
tion of a zero weighted mask over any 
feature in a magnitudc plot which repre­
sents a noise artefact (Fig. 7). These 
masks should ideally be the exact size 
of the feature they are masking to en­
sure that no real image data is removed. 
This is quite easy to accomplish for 
noise of a consistent periodicity which 
produces a well defined high intensity 
spike in the magnitude plot. But it is 
not vel)' easy to acoomplish for features 
which do not have a consistent perio­
dicit)· and therefore produce broad 
spikes in the magnitude plot. Masking 
these to zero may result in the loss of 
some image detail, which is contained 
within their broad 'skirts ' (Gonzalez & 

Figure7-SchcmaticFouriernolchfiltcrs 
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Wintz, 1977). Problems also occur 
when trying to mask even a well de­
flncd spike which occurs at fairly low 
frequencies as it may be contained 
within the central zone of image detail 
Even perfect delineation of such a point 
will result in the loss of image detail, as 
the spike will be partially comprised of 
real image detail as well as a noise 
component. One way of reducing thc 
loss of image detail in such circum­
stances is 10 mask the point with a non 
zero value, a suitable value can be de­
termined by interpolation from noise 
free regions from the surrounding mag­
nitude plot (Schowengerdt, 1983). 

Notch filtering is a technique 
which is best used to remove only well 
defined periodic features seen in a mag­
nitude plot, preferably features that pro­
duce bursts of concentrated energy at a 
certain distance from the image origin. 
It is best applied to image data such as 
the JERS-I Level-O data, specifically 
the VNIR channels. which exhibit ele­
mentary noisc stmctures in the fre­
quency domain. Notch filters are capa­
ble of removing the across-track noise 
seen in the lERS-l OPS VNIR chan­
nels, although their application to SWIR 
data is almost impossible; S\VIR chan­
nels are corrupted by too many complex 
structures (de Souza Filho et aI., 1996). 
Notch filters can successfully minimize 
the noise present in unprocessed SPOT 
images (Level IA), though it does not 
perform well in geometrically corrected 
scenes. Better quality AVHRR channel 
3 images can be aLso produced on the 
basis of standard notch filters but ring­
ing effects are always introduced to the 
images in the process (Simpson & 
Thann, 1994). Consequently, a unde­
sirable trade-off has to be made be­
tween removing signal energy and al­
lowing noise energy to pass through the 
filter. 

The major disadvantage of this 
process, despite of its limited success, is 
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that of time. This process is extremely 
slav,,· to implement as the magnitude 
plot for each channel has to be exam­
ined manually, and appropriate notch 
filtcrs created. The process can be 
speeded up slightly by inserting the zero 
weighted notches into a constant image 
\\oi1h a background DN value of one. 
This creates a binary mask which can be 
used to multiply any magnitude plot by, 
mapping 'notched' areas to zero whilst 
leaving the rest of the image unaffected. 
A problem associated with Notch fil­
tering is that sharp edges in the fiLter 
may introduce spurious unwanted pat­
terns in the spatial domain, such as 
ringing (Gonzalez & Wintz, 1977). 

Low-Pass Circular and Ellipti­
cally Symmetrical Fourier Filters 

Another approach to noise re­
moval is to use a low-pass filter by 
combining a magnitude plot multiplica­
tively with a large filter centred at low 
frequencies. These filters arc usually 
circular or elliptical in shape and are 
weighted from one DN at their centre to 
zero ON at their edge. This weighting 
can either be a straight forward linear 
slope or it can be controlled by a pre· 
determined function, such as a gaussian 
or logarithmic profile. These filters are 
located so that during multiplication 
their centres correspond with the zero 
frequency origin of the magnitude plot 
(Fig. 8). These filters have the affect of 
removing the high frequency compo­
nent of the magnitude plot whilst pre­
serving the lower frequencies. The ex­
tent of the region preserved depends 
both on the shape of the filter and on 
the weighting profile. This teclmique 
tends to eliminate the majority of high 
frequency noise structures although any 
noise at low frequencies tends to be pre­
served along with the image detail. Vice 
versa, any high frequency image detail, 
such as edge information, is lost along 
with the noise component. This results 
in the filtered images, once transformed 



Figure 8 - Schematic low-pass elliptically sim­
memcalFouricrfilter 

back into the spatial domain having a 
slightly blurred appearance, typically 
found in spatial domain low-pass fil­
tering. 

The advantage of this technique is 
thaI it is very quick 10 implement com­
pared to that of Notch filtering. The 
problem lies in the fact that this is a 
very basic tcchillque which removes 
artefacts at the expense of real image 
data. Tests of thls technique show that 
it works reasonably well on both Level­
o and Level-2 VKJR data, as it is capa­
ble of removing across-track noise. 
However, problems arise with the 
SWIR channels as these (especially 
Leve1-2 data) contain significant noise 
structures at low frequencies. Removal 
of these features using this technique 
means that a vel)' small filter has to be 
used, which results in only minimal im­
age detail being preserved. This pro­
duces a cleaned output image with very 
minimal textural infonnation preserved. 
Similar or even worse results are pro­
duced by applying such filters to SPOT 
and A VHRR channel 3 data. 

A variation of this technique is to 
combine these low-pass filters with 
isolated notch filters. This combined 
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technique means that the low-pass filter 
can be large, which helps to preserve 
the maximum amount of high frequency 
textural infonnation, whilst isolated 
notch filters ensure that specific high or 
lo\v frcquency noise spikes are re­
moved. The problem "'ith this ap­
proach is once again the time factor, as 
ideally individual filters need 10 be pro­
duced for each image channel. Tests of 
this combined approach have produced 
some favourable results for both Level­
o and Level-2 OPS data noise removal. 

Zonal Notch Filter (ZNF) 
The use of both standard notch 

and symmetrical low-pass filters, as de­
scribed above can solve some noise 
problems within the image data consid­
ered in this paper. This is because the 
noise that is within these channels does 
not coincide v.ith the range of frequen­
cies representing the majority of the im­
age data. There are situations, howcvcr, 
when important noise components fall 
within the frequency range of data rep­
resenting the real scene. In other words, 
the noise energy is mixed with the im­
age energy at the low frequency end of 
the range. This typically occurs in OPS 
SWIR channels 6, 7 and 8 (Figs. 9a and 
9c), in SPOT panchromatic scenes 
(Figs. 14a and l4b) and A VHRR chan­
nel 3 data (Figs. 15a and 1Sc), which 
are severely affected by a multitude of 
interference patterns, represented by 
numerous aligned bright spots, varying 
from high to low frequencies. Experi­
ments over these images using very 
small elliptical low-pass filters show 
that noise can be reduced, but at the ex­
pense of leaving out important high fre­
quency image infonnation. This causes 
the inverted FFT image to look blurred 
and devoid of useful textural and edge 
infonnation. Because of these noise 
characteristics, the approaches that Rose 
(1989) and Hummer-Miller (1990) used 
to remove the noise in A VIruS and 
TlMS images, respectively, caused by a 



few discrete sinusoidal harmonics at 
frequencies where there is little image 
signal energy, are not suitable for use. 

The problem faced with the data 
employed here is "how one can isolate 
the noise energy from the signal energy, 
along high to low-frequencies, without 
mixing their information ?". Figures 
9c, 14b and 15c show that the DNs 
comprising noise and most signal in­
formation are alike, making their dis­
crimination impossible (e.g., by histo­
gram manipulation) 

A pair of eharmels with highly 
correlated noise structures (at similar 
frequencies), but ,·vith poorly correlated 
scene information could provide the 
means to isolate the signal from the 
noise present in any multichannel data. 
It follows from this that a very accurate 
filter, which is scene dependent, can be 
derived from the difference between 
these two channels in the frequency 
domain. From this hypothesis, de 
Souza Filho et al. (1996) found that the 
above condition can usually be satisfied 
by at least two of the JERS-l channels. 
Stemming from that, they developed a 
method to restore JERS-I images quite 
successfully using Fourier operators. 

The choice of a pair of channels 
covering the specifications mentioned 
above, strongly depends upon the indi­
vidual scene information. However, 
some general rules can be addressed. It 
is demonstrable that the spectral infor­
mation present in JERS-l DPS charmels 
1,2,3 and 5 data is variable, but is dis­
tinct from that contained in channels 6, 
7 and 8. This means that scene infor­
mation between these sets are likely to 
be poorly correlated. The noise compo­
nents are much more obtrusive in chan­
nels 6,7 and 8 than in anv of the other 
DPS channels. The DPS VNIR chan­
nels are the least corrupted. Channel 5 
is the least affected by additive noise 
within the SWIR set, but always con­
tains it (Figs. 9b and 9d). Channel 5, 

Periodicnoisesup~ssicnt~hniques 

consequently, will always rank as a po­
tential candidate to be combined with 
any of the other individual SWIR chan­
nels for the frequency filtering opera­
tion. 

Assuming, by the way of an illus­
tration, that channel 5 and channel 8 
fulfil the prime conditions stated before, 
the next step involves transforming both 
channels to the Fourier domain and ex­
tracting their magnitude components 
(Figs. 9c and 9d). Because many image 
frequency spectra decrease rather rap­
idly as a function of increasing fre­
quency, their high frequency tenns have 
a tendency to become obscured when 
displayed in image form (Gonzalez & 
Wintz, 1977). We applied a gaussian 
contrast stretch 10 the magnitUde plots 
to bring-out this low-level information, 
which, if sho,",," simply as a standard 
magnitude pial, is beyond the dynamic 
range of the display system. The visual 
result of such contrast-stretch is similar 
to that of applying the traditional loga­
rithmic re-scaling to the magnitude plot 
(Gonzalez & Wintz, 1977), but has the 
advantage of being a data independent, 
contrast enhancing tedlllique. 

Considering that in both magni­
tude images: (i) the same gaussian­
stretch paramelers are applied, (ii) the 
Cartesian position of the worst defects 
(spots and spikes) approximately coin­
cide, and (iii) there is a reasonable dif­
ference between the scene information, 
then, the majority of the noise compo­
nents should be detected and isolated by 
subtracting the magnitude plot of the 
channel that shows the noise structures 
most predominantly from the other. 
Figure ge shows the magnitude plot re­
sulting from the difference bet\veen the 
magnitude plots of channel 8 (Fig. ge) 
and channel 5 (Fig. 9d). It is evident 
from Figure 9c that there is no apparent 
separability between the grey levels rep­
resenting the periodic noise structures 
from those representing the rest of the 



image data (e.g. the ON values for the 
centre of the spikes have close values to 
those at and around the zero frequency 
point). The difference between the 
magnitude images (OM!) (Fig. ge), 
however, shows all the noise compo­
nents to be concentrated at low ON val­
ues (dark pixels), while the pixels com­
prising the rest of the image signal re­
main at much higher ON levels 
(brighter pixels). The resulting OMI it­
self, although distinguishing the noise, 
would be difficult to inlerpret if trans­
fonned back to the spatial domain. 
However, it can be used as a basis for 
creating an effective scene-dependent 
filter. Such a filler can be produced, 
firstly, by re-scaling the OMI, produced 
by the above procedure to fonn a byte 
image. A threshold value is estimated 
which separates the noise componenl of 
the image from that of the real image 
component more precisely. This 
threshold is best found using an inter­
active pseudo-colouring routine to 
highlight the values representing noise. 
Once a threshold value which represents 
the break poinl between the noise and 
the real image components is found, a 
simple linear mapping function can be 
applied. This function is used to map 
all of the values in the OMI represent­
ing noise to zero, and to map all of the 
real image data to one, thereby creating 
a binary mask. Figure 9f illustrates a 
binary mask created by this procedure 
(the ON values for noise and image sig­
nals were mapped to 255 and 0, respec­
tively, for greater clarity). Such a mask 
is termed the 'Zonal Notch Filter' (ZNF) 
(de Souza Filho et aI., 1996). Note that 
all noise components are isolated in the 
process, including some other minor 
noise represented by small bright spots 
av.'3y from the main 'noise axes'. Figure 
10 outlines the processing steps in­
volved in creating the ZNF. 

Once a ZNF has been created it is 
combined multiplicatively with each 
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channel's FFT. This removes the un­
wanted noise component of the original 
image, as this is mapped to zero in the 
frequency domain. Figure II shows the 
processing steps for using this filter to 
remove noise from an original input im­
age. ZNFs will remove all noise com­
ponents introduced by both the optical 
sensor failures and those caused by the 
pre-processing algorithms, without re­
moving too much of the image infor­
mation, providing that a suitable break 
point is chosen. Because the ZNF is a 
bit image, and because the spatial fre­
quency of the noise is unaffected by 
stretched or unstretched magnitude 
plots, the multiplication of a ZNF to 
either, produces identical results as re­
gards noise reduction after the images 
are transformed back to the spatial do­
main. However, the use of gaussian­
stretched magnitude brings some spe­
cial effects to the scene in the spatial 
domain, which can be exploited to 
minimise brightness saturation prob­
lems within lERS-I , SPOT and 
AVHRR data (de Souza Filho et al., 
1996). A gaussian stretch applied to the 
magnitude plot can re-order the spatial 
frequencies into a gaussian distribution, 
yielding images that shows balanced 
luminance gradients, increased dynamic 
range and more uniform display of local 
details. 

Figures 9g and 9h show ZNF-re 
stored JERS-I OPS channel 8 and 
JERS-J OPS channel 6 images. The 
original images (Figs. 1a-9a and Ib) 
contain large amounts of both horizon­
tal and sub-vertical noise structures in 
the spatial domain, which represent a 
variety of complex interference patterns 
in the frequency domain. Applying the 
ZNF removed all of these interference 
patterns as well as the brightness satu­
ration, and has yielded images showing 
a significant improvemenl in quaJity. 
All OPS channels filtered by these 
methods exhibit similar improvements, 
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Figure 9 - (a) Level-2 raw JERS-J OPS channelS data; (b) Level-2 raw JERS-j OPS channel ~ data; (c) 
Magnitude plO! derived from the JERS-I OPS channelS of Figure (a); (d) Magnitude plot derived from 
SERS-) 01'S channel 5 of Figure (b); (e) difference magnitude image (DMJ), resulted from subtracting the 
magnitude plots of channels 5 and S: (f) Zonal Notch Filter (ZNF) derived from this DMI (in this picture, 
all ofthe valncs representing Iheestimoted noise were mapped to 255 and tlie re stofthc image to zem, for 
grcatcrdarity); 
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Figure 9 (conclusion) - (g) Restored l.evell lERS-1 SWIR OPS channel 8 data (compare with Fig. la); 
(b) Restored I...evell JERS-I SWtR OPS cbalUlc16 data (comDlITe with Fill. lb)' 

although achievements over SWLR 
channels 6 and 7 may vary according to 
sccne information and original data 
quality. 

DISCUSSION 

Among the noise minimisation 
techniques experimented in this paper, 
the PC transformation is clearly the 
least elTective. The PC method is not 
able to completely isolate the noise 
from the image signal. Even the PCs 
containing very high signal-to-noise ra­
tio (SNR), such as PCI, show consider­
able amount of remaining features re­
lated to a10ng- and across-track noise. 

The other restoration methods, 
howcver, show closer visual rcsults 
which can not be assessed solely in the 
spatial domain (Figs. 9g and 9h). In 
this case, analysis of the Fourier spectra 
of previously filtered images is a fine 
way to evaluate how effective a filtering 
tcchnique can be. Figure 12a shows the 
magnitudc plOI (half image) oflhe OPS 
channel 8 (Fig. la; 9a) filtered via a 
spatial domain low pass filter (Kernel 
6)_ The result of applying efficient 
elliptically symmetrical Fourier filters 
to the same image is practically identi-

cal and therefore not shown. In both 
cases, noise is eliminated or reduced 
from high-to-mid frequcncies, but there 
is still a significant mlmber of star-like 
components representing noise towards 
mid-to-low frequencies. The remaining 
noise is not completely obtrusive in the 
spatial domain, seeming to be diluted 
within the image signal. However, it 
can be greatly enhanced if a texture fil­
ter i~ applied (lower half of Fig. 12a). 
Another considerable drawback of these 
methods is that of while eliminating 
high frequency noisc they also tend to 
eliminate high frequency image signal, 
producing undesirable levels of blur 
and/or images lacking in topographic 
expression. 

Figure 12b represents the magni­
tude plot of the same image but restored 
hy the frequency domain Zonal Notch 
Filter (ZNF) tedmique. It shows thc 
hi gh dcgr~ of efficiency achieved by 
the method when compared wilh those 
previously discussed. Basically, no 
iloisc structures are Icft in the image and 
most of the signal impulses, from low­
to-high frequencies, arc prescrvcd. This 
method is the optima] procedure to re­
duce problems in multichannel data. A 
drawbflck ofthis technique, however, is 
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Figure I! - Flow diagram of the steps required for a complete restoration (noise removal and brightness 
equalization) of a single input channel. 
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Figure 12_Digital mosaic of magnitude plots (upper half of the pichlTe) and noise .. enhancedimages(i.e., 
convolved with a te~ture filter) in the spatial domain (lower half of Ihe picture). ((a) Magnitude plot 
(upper h.alf of the picture) of a JERS- l OPS 8 image filtered via a spatial domain low pass filter ( Kernel 
6). Note tlmt noise is reduced from high- to -mid frequencies, but there is still a significant amount of 
rem~ining artcfaclS in lhe spat ial domain (lower half-image - noise component in the spatial domain); (b) 
Magnitude plot (upper half of the picture) of the same JERS-l OPS 8 but restored by the Zonal Notch 
Filter (ZNF) technique. NQte that nQ residual noise appears after the ZNF is applied both in the frequency 
(upperhalfofthe picture) and spatial (lower half-image) domain. 

that it requires cart:ful t:xamination of 
interchannel noise correlation, to design 
filtering masks from the difference be .. 
tween channels. This indicates another 
problem; the dependence on multi­
channel analysis to create effective fil­
tCTS. Ovt:rcoming such dependence 
could use one of the fundamental laws 
in image restoration: the convolution 
theorem (see Gonzalez & Wintz. 1977 
for detai ls). The principle itself and 
other possible ways to produce optimal 
filters based on it (both in the frequency 
and spatial domains), are discussed be­
low. 

TIIIL SYNERGISTIC METHOD 

The convolution theorem states 
that the operation of convolution with a 
kernel in the spatial domain is equiva­
lent to multiplication in the frequency 
(Fourier) domain by a runction which is 

itself the Fourier Transfonn of the con­
volution mask. Mathematically, this 
can be explained as follows. Consider 
an image written as a two dimensional 
function f(x.y); its Fourier transfonn 
F(u,v) can he wriltenas: 

Eq.1I 

F(u,v) " 3{f(r,y) 

where 3{ represents the operation of 
two dimensional Fourier transforma­
tion, and u, v are spatial frequencies. Tht: 
original image may be recovered by per­
fonning the inverse transformation, i.e. 

Eq. 12 

[(r,y) = 3-' (F{u, v) 

Now, suppose that image I(x,y) is 
convolved with a kernel k(x,y) in the 
spatial domain to form a new image 



Eq.13 

f._(x,y) = [(x,y»)< k(x,y) 

where • represents the operation con­
volution. The kernel k(x,y) obviously 
modifies the relationship between the 
various spatial frequencies comprising 
the image /(x,y). It is as if the Fourier 
transform had been multiplied by a spa­
tial frequency weighting function or 
spatial frequency filter. Mathemati-

'i-jj·"'itiri'i",,·e 

BoI.lG-USP.~r. Ciert/ .. 28;23·61. 1997 

cally, this can be written as, 

Eq.14 

F .... (II,v) = F(Il,v)*K(II.V) 

where Fc","v and F are the Fourier trans­
forms ofho,,", and / respectively, and K 
is the spatial frequency filtering func­
tion. The most imponant relation for 
practical purposes is the (ollo\>oi ng, 

Eq.15 

K(u,~') " :3{k(x,y)} 

fit",·,,!t .. ,.. 

I Zonal Notch Filter I . <8> .. I Convolution Kernel I 
• Ideal frequency domain mask ~. Ideal spatial domain mask 

• 1024 x 1024 pixels Fourier filter ~ • 1024 x ,024pixelsconvoluUonfilter 

fii'iit.j'Wii'·' • 
IMAGE + NOISE 1 ... 1 ± NOISE ± I ... <S> ... ' DE;;~iNT' 

t I THR~CO 
r_1 - 2 _ 11 
1-2 12 -2 1 

L- I - 2 - IJ 
High Pass Convolulion Filter 

... 
8 

Figure 13 Applications of the synergistic mcthod for filter dcsign. 
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From Eg. 15, it can be said that 
the operation of severa! convolution 
kernels in sequence to the same image 
simply results in the Fourier transfonn 
of the image being multiplied by a suc­
cession of spatial filter functions. If one 
fonn the product of all these filters, and 
then apply the composite filter to the 
image 's Fourier transfonn in one go, the 
result is identical. One could also find 
the corresponding convolution kernel by 
applying Eq. 15 in reverse. This con­
volution kernel can be obtained by 
fonning the convolution of all the indi­
vidual kernels in sequence (this can be 
proven using Eq. 14). 

Eq.l5, therefore, can be extremely 
useful as it unfolds a two-way system 
for filter design (Fig. \3). In one way, 
based on its reverse, a procedure to 
choose the elements of a convolution 
kernel can be established. Firstly, the 
operator chooses the range of spatial 
frequencies which need to be removed 
in the frequency domain (e.g. high fre­
quency for noise), and constructs a Fou­
rier function which weights these fre­
quencies accordingly. Having arrived at 
a filter, the next step consists of per­
fonning the inverse Fourier ttansfonn 
on the function to meet the desired con­
volution kernel. The Zonal Notch Filter 
previously described proved to be the 
mosl efficient filler to minimise all 
noise defects on JERS-J imagery and 

Penodicnoose suppressoon techniques. 

therefore, the inverse Fourier Transfonn 
of such ' function' gives rise to an opti­
mal convolution kernel in the spatial 
domain. This kernel obviously will 
have the same size as the image (i.e. 
1024 x 1024 elements), but many of the 
elements not near the centre may be 
quite small, and are often substituted by 
zeros to reduce the matrix size Ex­
periments "''ith convolution kernels 
produced in such a way were also ex­
plored to some extent during this re­
search. The results are very similar to 
those obtained by the use of their pa­
rental Fourier filters and will not be re­
peatedhere. 

Perhaps more important, Eq.IS 
also allows standard 3x3 spatial con­
volution filters to be used as a basis for 
the design of very efficient filters in the 
frequency domain, not requiring the 
time consuming analysis of interband 
noise correlation needed for the stan­
dard ZNF approach. This can be done, 
firstly, by convolving the noisy channel 
with an ordinary high pass convolution 
filter, aiming to separate the majority of 
the noise content from the image data. 
Sma\! filters such as this, as said before, 
will perform a crude filtering with lim­
ited control on spatial frequencies; 
however, they have the advantage ofre­
qui ring minimwn computing time. 
Some useful high-pass filters used dur­
ing this research are show below, 

KERNEL 9 KERNEL 10 KERNEL II 

[-~ -: - ~l [~l -~ -~l [=~~; ~;l 
I - 2 1 0 -1 0 -I - 2 - I 

When the resultant convolved im­
age is transfonned to the frequency do­
main, it gives rise to a magnitude plot 
containing all the typical regular pattern 
of spikes representing noise. Such 
magnitude plot will also show some in 

formation about the signal. This 'mis­
behaviour' of the filter can be corrected 
if a threshold value which separates the 
noise and the signal is determined. This 
can be achieved following the same 
steps described for the Zonal Notch 



Filter, both noise suppression tech­
niques being performed identically from 
this stage. The results are obviously 
equivalent. The idea of this alternative 
method perhaps is not as elegant as that 
of the ZNF technique, but it brings the 
advantage of employing just one single 
channel to build up the same consistent 
Fourierfiher. 

The panchromatic SPOT image 
displayed in Figure 14a is amongst the 
data used here to demonstrate the effi­
ciency of this method. Note in the 
magnitude plot of Figure 14b (derived 
from the image of Fig. 14a) that the 
noise components are rotaled anli­
clockwise. That is because a geometric 
correction was performed in the original 
scene. This pre-processing further 
complicates the noise structure. After 
the resampling is applied, the noise is 
no longer coherent as it appears in un­
corrected LevellA data (Westin, 1990). 
That makes the isolation of noise a 
much more difficult task and therefore 
it is an excellent case to be used as a 
methodological proving ground. Figure 
14c is a magnitude plot created from 
high pass convolution filtering of the 
geometrically corrected SPOT scene. 
Note that this image resembles the dif­
ference magnitude image created by the 
standard ZNF method (Fig. ge). Here, 
the noise and image signal were sepa­
rated to some degree into very low and 
intermediate- to -high DNs. By care­
fully examining the histogram of Figure 
14c, to determine a threshold value 
which separates the noise component 
from that of the real image data, one can 
produce the mask as displayed in Figure 
14d. Observe that it is possible to 
modulate spatial frequencies represent­
ing only noise with extreme derail; vir­
tually no image signal is mistaken by 
noise. Using this mask as a Fourier op­
erator, following the procedures de­
scribed in the last steps of the ZNF 
method (including the brightness satu-
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ration correction), yields a noise-free, 
high quality SPOT image as pictured in 
Figure 14e. 

Figures 15a and 15b are NOAA9 
AVHRR channel 3 and channel 4, re­
spectively. The main noise associated 
with channel 3 is a complex of aliasing 
of high frequency noise (Simpson & 
Yhann, 1994). The aliased noise pro­
duces the horizontal bands which run 
from the left to the right side of the 
magnitude plot of Figure 15c. Figure 
ISd is the magnitude plot of A VHRR 
channel 4; Ma good channel 3M should 
show a magnitude plot similar to this. 
Figure ISe is the difference magnitude 
image (DMI), resulted from subtracting 
the magnitude plots of A VHRR chan­
nels 3 and 4. Similarly as observed in 
the JERS-J dara, this technique isolates 
the noise from the image signal quite ef­
ficiently. Figure ISf is a magnitude de­
rived from a high pass filter operation 
on the raw noisy A VHRR channel im­
age. The results from both approaches 
are alike, though the laner does not re­
quire a second channel to modulate the 
noise. Figure ISg and ISh are Zonal 
Notch Filters produced with broad-band 
and narrower-band thresholds, respec­
tively. Figures lSi and 15j are the cor­
responding restored images. Note that 
in this case both results are not so satis­
faclOry. The resultant images are either 
too blurred and lacking textural infor­
mation (Fig. lSi) or too noisy for ade­
quate use (Figure ISj). The reason for 
this is because there are further compli­
cations in the imagery, apart from the 
noise isolated in process, that simply 
denied some more obscure noise com­
ponents to be unmixed from the image 
signal. A!though the method did not 
perform convincingly for this particular 
AVHRR data set, it is usually capable 
of producing good results. The 
A VRHH data presented here contain 
some of the worst defects ever to be 
found in images acquired by the NOAA 
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Figure 14 - (~) Geometrically corrected panchronmlic SPOT 3 HVRI Level IA da la ; (b) Magnitude plot 
derived frull1\he p;!tlch.rolllatic SPOT J HVRI Level IA data of Figure (a); ( .. ) Magnitude plot ~ated 

rrom high pass cOllvolution filtering of SPOT 3 HVRJ Leve l IA in the spatial domain; (d) Zonal Notch 
Filter (ZNF); (e) Reslored panchrumalic SPOT J IIVRI Leve i lA data (compare with figure Ie). 
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Figure 15· (a) NOAA9 AVIIRR .. hanlK'l J data; (b) NOAA9 AVHRR channc14 data; (c) Magnitude 
[>101 derived from NOAA9 AVI1RR .. hannel 3; (d) Magnitude plot derived from NOAA9 AVHRR 
channel 4; (e) difference magnitude image (DM r), resulted from subtracting the magnitude plots of 
AVHRR chalUlels 3 and 4; (f) Magnitude plot .. reated from high pass convolution filtering of AVHRR 
chanlK'13 inihe spaiiaidomain 
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i'i&lIre 15 (conc lusion) - (g) broad-band Zonal Notch Filter (ZNF); (h) namlw-band Zonal Notch Filter 
(ZNF); ( i) Restored i\V~1RR channel 3 using a broad-Mnd Zonal Notch Filter (ZNF); note that the 
image noise-tree but at Ihe expense of unaccelable levels of blurring; (j) Restored AVHRR channel 3 
using a narrow-banoJ Zonal Notch Filler (ZNF) (compare wilh Figs. loJ ; lla amI l ib) 

series. 

CONCLUSIONS ANn WII)ER IM­
!'UCATIONS 

Images restored by [lilY of the 
methods described in Ihis p[lpcr, despite 
their good 4,uality and usefulness in 
many applications, fife not recolll­
mended for lise in quantitative measut'es 
ofrefleelanee. The reasolls for that vary 
from technique to technique and with 
the extent to which they are applied. 
Although the raw image hues can be 

well preserved in the whole llrocess, 
relative brightness components can be 
modified, compromising any quantita­
tive usage. The diagrams in Figure 17 
show this. 

Figure 16 is an image of the 
JERS-I OI'SH estimated noise in the 
spatial domain, yiel ded from subtracting 
a restored image Irom the original im­
age. Figure 17a illustnftes tbe variatiun 
of the noise components in the spati~l l 
domain for 1024 pixels along an arbi­
trary row of Figure 16, while Figure 17b 
shows the pattern of the noise for 1024 



Figure 16· JERS-l OPS channel 8 estimated 
noise in the spatial domain 

down an arbitrary column of Figure 16. 
Figure 17c-d and l7e-fare the same im­
age rows and columns extracted respec­
tively, from raw OPS channel 8 (one of 
the noisiest OPS channels) and raw 
OPS channel 5 (the least noisy OPS 
channel). The difference between 
OPS5 and OPS8 data is clear, OPS8 
showing far more noise spikes than 
OPS5. Ideally, a filter capable of elimi­
nating the noise whilst retaining most of 
the image data would be the one able to 
preserve the gross appearance of the 
profile shown by OPS 5, but free of 
those sharp spikes presented by OPS8. 
Figure 17g-h are the corresponding row 
and column extracted from the OPS8 
restored by the ZNF technique, with no 
brightness correction applied in the fre­
quency domain. The restored image is 
now comparable to OPS5 (Figure 17e­
f); i.e. it is smoother and it lacks in 
prominent periodic spikes. Some local 
modification has occurred, and post­
filtering quantification may produce du­
bious results. The same problem affects 
images restored by any of the other 
techniques. 

In cases where quantitative analy­
sis is crucial, it should precede 'clean-
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up' filtering. The same applies for seg­
mentation, enhancement and classifica­
tion procedures. For example, tech­
niques such as principal components 
analysis (PCA), decorrelation-stretch, 
ratio and intensity-saturation-hue (ISH) 
transformation, work better if clean-up 
filtering is performed on the final en­
hanced/classified images. The noise, 
which is greatly emphasised by these 
methods, is just as effectively removed 
post hoc. 

Care is also needed when per­
forming the brightness saturation mini­
misation procedure (which can be used 
as part of the ZNF method). Although 
it successfully reduces the large patches 
of saturated areas in the image by 
equalising low spatial frequencies, the 
operation may 'wash out' important 
spectral and tonal differences within 
these patches. The brightness correc­
tion also reduces total image variance 
Figure 18 shows variances of a raw 
OPS8 image and variances for several 
restored versions of the same OPS8. 
Note that for all images restored in the 
frequency domain, a significant differ­
ence on the image variance occurs when 
the brightness correction is applied. The 
variance in these cases are much lower. 
That is simply because there is a 
decrease in image saturation at the ex­
pense of illuminalion, the component 
responsible for the overall dynamic 
range of the scene. Despite these prob­
lems, there are situalions when bright­
ness saturation can completely avoid the 
concomitant observation of very bright 
and very dark areas in the imagery, so 
that it must be corrected. In this cases, 
the best way to avoid arbitrarily 'loss' 
of information is to inspect the tonal 
and spectral differences in the image 
prior to restoration. 

Analysis of the total image vari­
ances on Figure 18 is also interesting as 
it confirms some previous results. The 
OPS8 reslored by the ZNF method (no 
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Figure 17_llIustrationsoftheacrualimpactofthenoisecomponentsoverOPSimages and their suppres­
sion via the Zonal Notch filter technique. (a) (b) Variation of the noise components in the spatial domain 
for 1024 pixels along an arbitrary row and column in OPSS (Figure 2eA); (c) (d) Superposition of noise 
and image signal in the rawOPS 8 (Figure 2A.2b); (c)(f) Superposition of noise and image signal in the 
rawOPS 5 - note the ab5Cnce of equidistant spikes when compared with plots in (e) and (d); (g)(h) OPS 8 
restored via the Zonal Notch filtertechnique-notethesimilarity betwte n these plotsandthoseof(e)and 
(f) _ All images were scaled to the same DN range to avoid distortions. 

brightness correction applied) contain 
the highest variance This variance 
value is the closest to QPS channel 5 
amongst all others, indicating the pow­
erfulness of the technique to relegate 
noise, preserving the important image 
signaL The similarities between the 
Fourier spectrum obtained for images 
restored via both spatial domain low 
pass filters and frequency domain sym-

metrically elliptical gaussian filters 
(Fig. 12a), are mirrored by their vari­
ance values, which are almost coinci­
dent. Figure 18 also shows that the es 
timated noise is remarkably high when 
compared to the original image itself on 
an absolute scale_ Minimisation of its 
effect is, therefore, inevitably necessary. 

Whereas a ZNF significantly sup­
presses the noise in the SWlR data, it 
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Figure 18 - Variances of a raw JERS-J OPS8 image and variances for several restored versions of the 
same OPS8. Note that all images restored in the frequency domain and corrected for brightness s.atutation 
display lower variance range 

does not totally eliminate the noise. 
This is true for all filtering methods in 
which the noise and signal overlap in 
the spatial and spectral domains (Simp­
son & Ybann, 1994). In these cases, the 
noise cannot be totally removed without 
a complete description of the noise or 
signal. The best that can be achieved is 
that the residual noise is reduced as 
much as possible with as linle as possi­
ble image distonion introduced 
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