Preformulation studies for the development of a microemulsion formulation from Ambrosia peruviana All., with anti-inflammatory effect

Authors

  • Yuri Paola Palacio Taborda Pharmaceutical, Cosmetic and Food Technology Research Group (GITFCA), Facultad de Ciencias Farmacéuticas, Universidad de Cartagena, Colombia; Biological Evaluation of Promising Substances Group, Facultad de Ciencias Farmacéuticas, Universidad de Cartagena, Colombia
  • Jenny Castro Facultad de Química y Farmacia, Universidad del Atlántico, Colombia; Biological Evaluation of Promising Substances Group, Facultad de Ciencias Farmacéuticas, Universidad de Cartagena, Colombia
  • Valquiria Linck Bassani Pharmaceutical Technology Group, Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil https://orcid.org/0000-0001-9525-5855
  • Luis Alberto FrancO Biological Evaluation of Promising Substances Group, Facultad de Ciencias Farmacéuticas, Universidad de Cartagena, Colombia
  • Carlos-Alberto Bernal Rodríguez Pharmaceutical, Cosmetic and Food Technology Research Group (GITFCA), Facultad de Ciencias Farmacéuticas, Universidad de Cartagena, Colombia; Pharmaceutical Technology Group, Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil https://orcid.org/0000-0001-8681-5777

DOI:

https://doi.org/10.1590/s2175-97902023e22505%20

Keywords:

Ambrosia peruviana, Preformulation, Stability test, Excipient compatibility study, Microemulsion

Abstract

Natural products are considered an important source of the therapeutic arsenal currently available. Among these alternatives are the seeds of Ambrosia peruviana (altamisa), whose extract has shown an anti-inflammatory effect. The main objective of this work was to perform a preformulation study of Ambrosia peruviana seeds ethanolic extract, where the main factors that affect the physical, chemical, and pharmacological stability of the extract were evaluated, as well as a compatibility study by differential scanning calorimetry (DSC) analysis against different excipients. A dry extract was obtained by rotary evaporation of the seeds macerated with 96% ethanol. The anti-inflammatory activity was determined by measuring its effect on NO production in RAW 264.7 macrophages, stimulated with LPS. The results showed that the dry extract maintained its stability over time when stored at a temperature of 4 and 25ºC, demonstrating its biological activity, the content of phenolic compounds, and its physicochemical parameters remain practically invariable. However, when exposed to high temperatures (60 ºC) it was affected. The thermal analysis revelated that the behavior of most of the selected excipients and the dry extract was maintained, which indicates that it did not present incompatibilities, therefore they can be candidates for formulating a microemulsion.

Downloads

Download data is not yet available.

References

Ahmed J, Kaur A, Shivhare U. Color degradation kinetics of spinach, mustard leaves, and mixed puree. J Food Sci 2002;67(3):1088-91.

Andrade MG. Estado del conocimiento de la biodiversidad en Colombia y sus amenazas. Consideraciones para fortalecer la interacción ciencia-política. Rev Acad Colomb Cienc Exactas Fis Nat 2011;35(137):491-508.

Bernal CA, Aragón M, Baena Y. Dry powder formulation from fruits of Physalis peruviana L. standardized extract with hypoglycemic activity. Powder Technol 2016;301:839-47.

Bernal CA, Ramos FA, Baena Y. Dry powder formulation from Physalis peruviana L. fruits extract with antidiabetic activity formulated via co-spray drying. Int J Appl Pharm 2019;11(3):109-17.

Camelo G, Sotelo L. Efecto de las condiciones de almacenamiento sobre el color, contenido de polifenoles y capacidad antioxidante de una bebida de Borojoa patinoi Cuatrecasas. Boletin Latinoam Caribe Plantas Med Aromat 2012;11(2):196-205.

Castro JP, Franco LA, Diaz F. Anti-inflammatory screening of plant species from the Colombian Caribbean Coast. J Appl Pharm Sci 2021;11(04):106-17.

Cicció JF, Chaverri C. Essential oil composition of Ambrosia cumanensis (Asteraceae) from Costa Rica. Am J Essent Oils Nat Prod 2015;3(2):15-21.

Cicco N, Lanorte M, Paraggio M, Viggiano M, Lattanzio V. A reproducible, rapid and inexpensive Folin-Ciocalteu micro-method in determining phenolics of plant methanol extracts. Microchem J 2009;91(1):107-10.

Desai KGH, Park HJ. Recent developments in microencapsulation of food ingredients. Dry Technol 2005;23(7):1361-94.

Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 1982;126(1):131-8.

Hibbs JB, Vavrin Z, Taintor RR. L-arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J Immunol 1987;138(2):550-65.

ICH. Harmonised tripartite guideline, stability testing of new drug substances and products, Q1A(R2) Geneva, Switzerland: ICH; 2003.

Jimenez-Usuga NDS, Malafronte N, Cotugno R, De Leo M, Osorio E, De Tommasi N. New sesquiterpene lactones from Ambrosia cumanensis Kunth. Fitoterapia 2016;113:170-4.

Kingston DG. Modern natural products drug discovery and its relevance to biodiversity conservation. J Nat Prod 2010;74(3):496-511.

Kiss D, Zelkó R, Novák Cs, Éhen Zs. Application of DSC and NIRS to study the compatibility of metronidazole with different pharmaceutical excipients. J Therm Anal Calorim 2006;84(2):447-51.

Kopelman SH, Augsburger LL. Excipient compatibility study of Hypericum perforatum extract (St. John’s Wort) using similarity metrics to track phytochemical profile changes. Int J Pharm 2002;237(1-2):35-46.

Lattanzio V. Bioactive polyphenols: their role in quality and storability of fruit and vegetables. J Appl Bot 2003;77(5/6):128-46.

Malinski T, Mesaros S, Tomboulian P. Nitric oxide measurement using electrochemical methods. Methods Enzymol 1996;268:58-69.

Matiz G, Cárdenas P, Rincon V. Estudios de preformulación de un fitomedicamento tópico antiinflamatorio con base en fracciones activas de flores y hojas de Caesalpinia pulcherrima (L.) Swartz empleando modelos analíticos biológicos. Lat Am J Pharm 2007;26(3):332.

Medzhitov R. Origin and physiological roles of inflammation. Nature 2008;454(7203):428-35.

Meetoo D. Chronic diseases: the silent global epidemic. Br J Nurs 2008;17(21):1320-5.

Mejia NM, Castro JP, Ocampo YC, Salas RD, Delporte CL, Franco LA. Evaluation of antioxidant potential and total phenolic content of exotic fruits grown in Colombia. J Appl Pharm Sci 2020;10(09):050-8.

Morante J, Agnieszka A, Bru R, Carranza M, Pico R, Nieto E. Distribución, localización e inhibidores de las polifenol oxidasas en frutos y vegetales usados como alimento. Cienc Tecnol 2014;7(1):23-31.

Nagai J, Uesawa Y, Shimamura R, Kagaya H. Characterization of the adverse effects induced by acetaminophen and nonsteroidal anti-inflammatory drugs based on the analysis of the japanese adverse drug event report database. Clin J Pain 2017;33(8):667-75.

Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J 1992;6(12):3051-64.

Organización Mundial de la Salud (OMS), Estrategias de la OMS sobre medicina tradicional 2014-2023 Ginebra; 2013.

Pan MH, Lai CS, Ho CT. Anti-inflammatory activity of natural dietary flavonoids. Food Funct 2010;1(1):15-31.

Prasad S, Sung B, Aggarwal BB. Age-Associated chronic diseases require age-old medicine: role of chronic inflammation. Prev Med 2012;54(Suppl):S29-37.

Ranjan N, Kanta L, Acharya S, Bhuniya B. Application of DSC, IST, and FTIR study in the compatibility testing of nateglinide with different pharmaceutical excipients. J Therm Anal Calorim 2012;108(1):219-26.

Rodríguez MH, Gallego AS. Tratado de nutrición Ediciones Díaz de Santos; 1999.

Serajuddin AT, Thakur AB, Ghoshal RN, Fakes MG, Ranadive SA, Morris KR, et al. Selection of solid dosage form composition through drug-excipient compatibility testing. J Pharm Sci 1999;88(7):696-704.

Sims JL, Carreira JA, Carrier DJ, Crabtree SR, Easton L, Hancock SA, et al. A new approach to accelerated drug-excipient compatibility testing. Pharm Dev Technol 2003;8(2):119-26.

Srivastava A, Akoh CC, Yi W, Fischer J, Krewer G. Effect of storage conditions on the biological activity of phenolic compounds of blueberry extract packed in glass bottles. J Agric Food Chem 2007;55(7):2705-13.

Taira J, Nanbu H, Ueda K. Nitric oxide-scavenging compounds in Agrimonia pilosa Ledeb on LPS-induced RAW264. 7 macrophages. Food Chem 2009;115(4):1221-7.

Uurrea D, Eim V, Roselló C, Simal S. Modelos cinéticos de degradación de carotenoides, polifenoles y actividad antioxidante durante el secado convectivo de zanahoria (Daucus carota V. Nantesa). Aliment Hoy 2012;21(27):68-101.

Valenzuela GM, Cravzov AL, Soro AS, Tauguinas AL, Giménez MC, Gruszycki MR. Relación entre actividad antioxidante y contenido de fenoles y flavonoides totales en semillas de Cucurbita spp. Dominguezia 2014;30(1):19-24.

Vonkeman HE, Van de Laar MAFJ. Nonsteroidal anti-inflammatory drugs: adverse effects and their prevention. Semin Arthritis Rheum 2010;39(4):294-312.

WHO. WHO Expert Committee on specifications for pharmaceutical preparations. Rev Inst Med Trop São Paulo 2008;50(3):144-144.

Wu Y, Dali M, Gupta A, Raghavan K. Understanding drug-excipient compatibility: oxidation of compound A in a solid dosage form. Pharm Dev Technol 2009;14(5):556-64.

Wyttenbach N, Birringer C, Alsenz J, Kuentz M. Drug-excipient compatibility testing using a high-throughput approach and statistical design. Pharm Dev Technol 2005;10(4):499-505.

Downloads

Published

2023-06-13

Issue

Section

Original Article

How to Cite

Preformulation studies for the development of a microemulsion formulation from Ambrosia peruviana All., with anti-inflammatory effect. (2023). Brazilian Journal of Pharmaceutical Sciences, 59. https://doi.org/10.1590/s2175-97902023e22505