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ABSTRACT
Avian coronavirus (AvCoV) infects a range of tissues in chickens and several other avian species. Although the virus 
can be isolated in chicken embryos, only a few strains of the 6 genotypes/33 lineages can grow in cell lines, with the 
Beaudette strain (GI-1 lineage) being the most used for in vitro studies. Considering the differences between cell 
lines and chicken embryos as habitats for AvCoV, this study aimed to assess the diversity of the genes coding for 
the nonstructural protein 3 (nsp3) and spike envelope protein (S) after serial passages in BHK-21 and Vero cells. 
After 14 passages of an embryo-adapted Beaudette strain, the virus loads fluctuated in both cell lines, with the highest 
loads being 8.72 log genome copies/µL for Vero and 6.36 log genome copies/µL for BHK-21 cells. No polymorphisms 
were found for nsp3; regarding S, not only aa substitutions (Vero: 8th passage A150S, and 14th S150A; BHK-21: 4th 
S53F, 8th F53Y, and 8th S95R), but also minor variants could be detected on chromatograms with fluctuating intensities. 
As the regions of these aa substitutions are within the receptor-binding domain of S, it can be speculated that differences 
in cell receptors between Vero and BHK-21 cells and the speed of cell death led to the selection of different dominant 
strains, while the stability of nsp3 supports its function as a protease involved in AvCoV replication. In conclusion, 
AvCoV quasispecies evolution is influenced by the biological model under consideration, and a gradual transition is 
seen for minor and major variants.
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RESUMO
O Coronavírus aviário AvCoV infecta uma variedade de tecidos de galinhas e de outras espécies aviárias. Apesar 
de este vírus poder ser isolado em ovos embrionados de galinha, apenas alguns dos 6 genótipos / 33 linhagens 
podem crescer em cultivo celular, sendo a cepa Beuadette (linhagem GI-11) a mais utilizada para estudos in vitro. 
Considerando as diferentes linhagens celulares e ovos embrionados como habitats para o AvCoV, este estudo teve 
por objetivo estudar a diversidade de genes que codificam para a proteína não-estrutural 3 (nsp3) e espícula (S) 
após passagens seriadas em células BHK-21 e VERO. Após 14 passagens, de uma amostra Beuadette adaptada a 
ovos embrionados, os títulos virais variaram em ambas as células, com os maiores títulos sendo de 8,72 log cópias 
genômicas/µL para Vero e 6,36 cópias genômicas/µL para BHK-21. Nenhum polimorfismo foi encontrando para 
nsp3. Considerando a proteína S, não somente foram encontradas substituições de aminoácidos (Vero: 8a passagem 
A150S e 14a passagem S150A; BHK-21: 4a passagem S53F, 8a passagem F53Y e S95R), mas também, variantes 
subconsensuais foram detectadas pelos cromatogramas com intensidades flutuantes. Uma vez que as regiões destes 
aa se encontram no domínio de ligação de receptor de S, pode-se especular que diferenças em receptores celulares 
entre Vero e BHK-21, além da velocidade da morte celular, levaram à seleção de diferentes cepas dominantes, 
enquanto que a estabilidade de nsp3 concorda com sua função como protease com papel na replicação de AvCoV. 
Como conclusão, a evolução de quase-espécies de AvCoV é influenciada pelo modelo biológico sob consideração 
e uma transição gradual é vista para variantes dominantes e subdominantes.
Palavras-chave: Coronavírus aviário. Espícula. Nsp3. Cultivo celular.
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Introduction
Infectious bronchitis virus (IBV) is the prototype host 

type in the species avian coronavirus (AvCoV) (Riboviria; 
Nidovirales; Cornidovirineae; Coronaviridae; Orthocoronavirinae; 
Gammacoronavirus; Igacovirus; Avian Coronavirus) and 
infects mainly chickens (Gallus gallus), causing avian 
infectious bronchitis (IB), an acute multisystemic disease of 
great economic impact on the poultry industry (Cavanagh, 
2007; Colvero et al., 2015; Cook et al., 2012; International 
Committee on Taxonomy of Viruses, 2018; Sjaak de Wit et al., 
2011). Its control is globally achieved through immunization 
with attenuated and killed vaccines, but novel variants 
emerge in cases of low vaccine coverage (Cavanagh, 2007; 
Colvero et al., 2015; Cook et al., 2012; Sjaak de Wit et al., 
2011; Toro et al., 2012a, 2012b).

AvCoV is an enveloped virus with a +ssRNA genome 
of 27.6 kb in length with 10 open reading frames (ORFs) in the 
following order: 5’UTR-1a-1ab-S-3a-3b-E-M-5a-5b-N-3’UTR; 
the UTRs are untranslated regions (Cavanagh, 2007; 
Laconi et al., 2018). The replicase gene is in ORFs 1a and 1ab 
and is expressed as two polyproteins, pp1a and pp1ab, which 
are cleaved into 15 nonstructural proteins (NSPs 2-16) 
(Cavanagh, 2007; Laconi et al., 2018). The genome also 
encodes four structural proteins, the spike glycoprotein (S), 
small membrane protein (E), integral membrane protein (M) 
and nucleocapsid protein (N), and the accessory proteins 3a, 
3b, 5a, and 5b (Cavanagh, 2007; Laconi et al., 2018).

The genetic diversity of the virus is modulated by 
mutation and recombination, and this phenomenon can be 
promptly detected for the S protein, which is the basis for 
new serotypes (Cavanagh, 2007; Sjaak de Wit et al. 2011). 
The ectodomain of the S protein is divided into the S1 and 
S2 subunits, both of which are responsible for cell tropism 
(Bickerton et al., 2018; Casais et al., 2003). In S1, one can 

find the receptor-binding domain (RBD) with amino acids 
critical for attachment, where small variations in amino 
acids are enough to give rise to new variants (Cavanagh, 
2007; Promkuntod et al., 2014; Sjaak de Wit et al. 2011).

Beaudette is an attenuated GI-1 type (Massachusetts) 
strain of AvCoV adapted to grow in Vero cells (green 
monkey kidney epithelial cells), making it a suitable model 
for studies on IBV evolution in vitro (Coria & Ritchie, 
1973; Cunningham et al., 1972; Yamada et al., 2009), but 
other cell lines, such as BHK-21 (baby hamster kidney 
cells) cells, are also used for IBV and other coronaviruses 
(Laconi et al., 2018).

This study was designed to gather data on IBV in vitro 
evolution, aiming to 1) compare the molecular evolution of 
S1 and the nsp3-coding regions, which have high and low 
evolutionary rates, respectively, after serial passages of the 
Beaudette strain in Vero and BHK-21 cells, 2) measure the 
effects of mutations on virus fitness, and 3) infer possible 
consequences of accumulated mutations on protein structures.

Materials and Methods

Cells lines and virus

The Vero and BHK-21 cell lines were grown in 25 cm2 cell 
culture flasks with minimum essential medium (MEM - Gibco™) 
supplemented with 10% fetal bovine serum (FBS - Gibco™) 
at 37°C, and each passage was tested for Mycoplasma spp. 
using PCR (Nikfarjam & Farzaneh, 2012; Young et al., 2010).

The Beaudette strain of IBV isolated in chicken embryos 
was used as a starting seed for the downstream experiments.

Passages of the Beaudette strain in the cell lines

Vero and BHK-21 cell monolayers at >90% confluence 
in 25 cm2 flasks were used for serial passages of the 
Beaudette strain as follows: i. the growth medium was 
discarded; ii. the inoculum or MEM (negative control) was 
added; iii. viral adsorption was allowed to occur at 37ºC 
for 1 h; iv. the inoculum or negative control MEM was 
discarded; v. 10 mL of MEM plus 10% FBS was added to 
the monolayers, followed by incubation at 37ºC for 48 h; 
and vi. monolayers where frozen at -80ºC, thawed and 
clarified at 1,000×g for 5 minutes, with the supernatant 
used for the next passage.

As adaptive mutation plays an important role in 
cell-specific replication fitness, and to analyze this change 
in new host cells, passages were performed, providing two 
drastic changes in the environment for passage in Vero cells. 
From the original preparation (embryo-adapted Beaudette 
strain), the inoculum was passaged once on BHK-21 cells 
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(first passage). Using this first passage, successive passages 
in BHK-21 cells (second to 14th passage) and in Vero cells 
(first to 14th passage) were performed.

Determination of virus load

Total RNA was extracted from all passages with a PureLink™ 
RNA Mini Kit (Ambion) according to the manufacturer’s 
instructions. For RT-qPCR, the RNA from all samples 
was used to obtain the viral titer and the β-actin mRNA 
amount, serving as an endogenous gene expression level.

IBV virus loads in Vero and BHK-21 cells were assessed 
in triplicate using RT-qPCR targeting the 5’UTR, as 
described by Callison et al. (2006) (400 nM IBV5’GU391 and 
IBV5’GL533 primers), with a Power SYBR™ Green RNA-to-CT™ 
1-Step Kit (Applied Biosystems) according to the manufacturer’s 
instructions. For absolute quantification, a plasmid with 
a 5’UTR sequence was used to construct a ten-fold dilution 
standard curve from 107 to 103 copies, which resulted in a 
linear equation (y=-3.357x + 38.05) with an R2 value=1.0 and 
efficiency of 98.56%. The absolute values (copies/µL) were 
calculated with normalization using β-actin mRNA from 
cells, with GoTaq® Probe 1-Step RT-qPCR (Promega) 
performed according to the manufacturer’s instructions and 
with primers (400 nM) and a probe (150 nM) described 
by Ono et al. (2017).

Mean viral loads were tested for normality distribution 
with the Anderson-Darling test and the Mann-Whitney U 
test for comparison between the medians, with a critical 
p-value of 5% using the nortest package (v.1.0.4) in the 
R program v.3.4.3 (2017) (R Core Team, 2015).

Partial amplification and Sanger sequencing of S1 
and nsp3

Complementary DNAs (cDNAs) for all passages were 
synthesized with SuperScript™ III Reverse Transcriptase 
(Invitrogen) and Random Primers™ (Invitrogen) and 
used for partial amplification of S1 and nsp3 with the 
high fidelity DNA polymerase AccuTaq™ LA DNA 
Polymerase (Sigma-Aldrich) and with the primers 
described previously (Jones et al., 2005; Lin et al., 2004; 
Rossa et al., 2012).

Amplicons were purified with Illustra™ ExoproStar™ 
(GE Healthcare) or an Illustra™ GFX™ PCR DNA and 
Gel Band Purification Kit (GE Healthcare), both 
according to the manufacturer’s instructions, and 
submitted to bidirectional Sanger sequencing with 
BigDye™ v3.1 (Applied Biosystems) according to the 
manufacturer’s instructions in an ABI-3500 Genetic 
Analyzer (Applied Biosystems).

Sequence analysis

The chromatograms generated for each of the sense and 
antisense sequences were analyzed by the online Phred 
application available at Empresa Brasileira de Pesquisa 
Agropecuária (2018), and only positions with Phred scores 
≥ 20 were used. Each final sequence was generated with the 
Cap-contig application in the BioEdit program v.7.2.5 and 
submitted to BLASTn (Basic Local Alignment Search Tool) 
for sequencing confirmation at Basic Local Alignment 
Search Tool (BLAST, 2018). 

The obtained partial S1 and nsp3 sequences were 
compared among passages for nucleotide and amino acid 
polymorphisms and identity locations after alignment 
using ClustalW multiple alignment in the BioEdit 
program v.7.2.5.

Protein structure analysis

Three-dimensional (3-D) models for the S1 protein 
region under analysis were inferred using the I-TASSER 
(Iterative Threading Assembly Refinement) algorithm 
available online at Zhang Lab (2018), choosing the models 
with the highest C-score (Zhang, 2008).

Results

Passages of the Beaudette strain in Vero and BHK-21 
cells

IBV-induced syncytial cytopathic effect (CPE) was 
observed after 24 h post-inoculation for all passages in both 
Vero and BHK-21 cells, while no alterations were noticed 
in the monolayers of the negative controls. Examples of 
the CPE are shown in Figures 1 and 2.

Viral loads

In both Vero and BHK-21 cells, an oscillation in 
virus loads was observed throughout the 14 passages 
(Figures 3 and 4 and Table 1), but significant differences 
(p=0.0156) were detected only for median virus loads from 
the first to the 7th passage and from the 8th to the 14th passage 
in Vero cells, which decreased from 7.36 log to 5.44 log the 
median values of IBV genome copies/µL between these 
two series of passages.

Molecular diversity analysis

The sequences of the partial S1 subunit and nsp3 protein 
from the original inoculum can be found under the 
GenBank Accession numbers MK550892 and MK550893, 
respectively. The variant sequences were not submitted to 
avoid redundancy.
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Figure 1 – CPE (cytopathic effect) after the inoculation of the Beaudette IBV strain in BHK-21 cells (10th passage) at 0, 24 and 48 h 
post-inoculation (400x magnification); negative control corresponds to monolayers mock-infected with MEM.

Figure 2 – CPE (cytopathic effect) after the inoculation of the Beaudette IBV strain in Vero cells (14th passage) at 0, 24 and 48 h 
post-inoculation (400x magnification); negative control corresponds to monolayers mock-infected with MEM.

Figure 3 – IBV genome copy number per µL of sample of RNA, for the 14 passages of the Beaudette IBV strain in Vero cells.

Figure 4 – IBV genome copy number per µL of sample of RNA, for the 14 passages of the Beaudette IBV strain in BHK-21 cells. 
Original refers to the embryonated chicken egg (ECE) inoculum.
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No polymorphisms were found for nsp3 for any of the 
passages and cell lines, but regarding S1, not only amino 
acid substitutions, but also minor variants could be detected 
on the chromatograms in fluctuating intensities at the 
mutated positions (Tables 2 and 3).

In Vero cells, the 8th passage showed a G448T nucleotide 
substitution on the spike gene, resulting in an A150S 
amino acid substitution that reverted to the original 
state at passage 14. As seen in Table 3, the variant with a 
thymine at position 448 gradually peaked in frequency, 

Table 1 – Median values of IBV genome copy numbers after 
passages of the Beaudette strain in Vero and BHK-21 cells

BHK VERO
1st to 7th 5.15 7.36
8th to 14th 5.71 5.44
p-value 0.1563 0.0156

Table 2 – Mutations found after passages of the Beaudette strain 
in Vero and BHK-21 cells. Positions in reference to 
GenBank accession number: NC001451.1

Spike gene mutations
Cell line Cell passage nt mutation aa mutation

VERO 8th G448T A150S
14th T448G S150A

BHK-21 4th C158T S53F
8th T158A F53Y
8th T285G S95R

Table 3 – Degenerate positions found in chromatograms after 
partial S1 sequencing of the Beaudette IBV strain in 
Vero and BHK-21 cells; ‘>’ for higher peaks and ‘~’ 
for visually similar

Passages
BHK-21 VERO

aa 158 aa 285 aa 448
1 C T G
2 Y (C>T) T G
3 Y (C~T) T G
4 Y (T>C) T G
5 Y (T>C>A) T G
6 T T K (G>T)
7 W (T>A) T K (G>T)
8 W (A>T) K (G>T) K (T>G)
9 A G K (T>G)

10 A G K (T>G)
11 A G K (T>G)
12 A G K (G~T)
13 A G K (G~T)
14 A G K (G>T)

Figure 5 – Amino acid alignment of partial S1 gene, with mutations highlighted; Positions 131 to 170 and 51 to 100 on sequences 
from Vero and BHK-21, respectively (regarding GenBank accession number NC001451.1).

Figure 6 – Tertiary protein structures from partial S1 subunit of S gene 
of the Beaudette strain of IBV (nt 42 to 863; aa 28 to 287) 
at Vero passages 7 (white) and 8 (dark gray), and the 
amino acids mutation in positions 150, yellow (alanine) 
and red (serine), for these respective passages. Positions 
in reference to GenBank accession number: NC001451.1.

appearing on chromatograms at the 6th passage and 
becoming dominant, while the variant with a guanine 
at position 488 showed decreasing chromatogram peak 
frequencies and reverted to the original dominant state 
only at the 14th passage.

In the Vero cell passages, there was a constant 
alternation between variants based on chromatogram 
peaks, and different from the BHK-21 cell passages, 
spike gene mutations did not revert to the original states 
at higher passages (Tables 2 and 3); a C158T nucleotide 
substitution in the 4th passage led to a S53F amino acid 
substitution, and T158A in the 8th passage led to a F53Y 
amino acid substitution, while at position 285 in the 8th 
passage, a T285G nucleotide substitution led to a S95R 
aa substitution (Figure 5).

Protein structure analysis

Protein structure prediction was carried out with partial 
S1 sequences corresponding only to passages in which 
mutations were found, i.e., Vero cell passages seven and 
eight (A150S) and BHK-21 cell passages three, four and 
eight (S53F, F53Y and S95R), and resulted in local changes 
in protein folding, as shown in Figures 6 and 7, with no 
apparent global consequences for S1 monomers.
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Discussion
The ability of the Beaudette strain to grow efficiently 

and cause CPE (cytopathic effect) in Vero (African green 
monkey kidney) and BHK-21 (baby hamster kidney) cells 
has long been established (Cunningham et al., 1972; Coria 
& Ritchie, 1973; Otsuki et al., 1979) and is often used in IBV 
studies (Cook et al., 2012). In the present study, the Beaudette 
strain was subjected to 14 passages in both mammalian 
cell lines to assess IBV evolution under different habitats.

Although the original inoculum used in this study was 
derived from an embryonated chicken egg (ECE) passage, 
CPE was evident starting at passage 1 in both cell lines. 
The typical CPE for coronaviruses in cell culture, with the 
formation of syncytia, cell rounding and consequently 
cell lysis (Liu et  al., 2001), was clearly detected in Vero 
and BHK-21 cells (Figures 1 and 2), with no noticeable 
differences among passages and cell lines.

The first emergence of CPE for the Beaudette strain in 
Vero cells has been reported only at passage 4 (Fang et al., 
2005), while in BHK-21 cells, it has been reported with 60 h 
after inoculation (Otsuki  et  al., 1979). Thus, differences 
in the volume and titer of the starting inoculum and the 
number of cells in the monolayers could have resulted in 
the earlier emergence of CPE detected during this study.

Nonetheless, the first passage in BHK-21 cells showed a 
decrease in virus load from 5.86 log genome copies/µL in 
the original ECE inoculum to 4.23 log genome copies/µL, 
while the 1st passage in Vero cells using the 1st passage in 
BHK-21 cells as an inoculum showed a virus load of 7.57 log 
genome copies/µL. This initial increased fitness in Vero 
cells is probably due to the presence of preselected variants 

in the quasispecies, as evidenced by the high adaptability 
of the Beaudette strain to Vero cells (Fang  et  al., 2005; 
Wickramasinghe et al., 2011).

From the first passages on, virus loads in both Vero 
and BHK-21 cells oscillated as a possible consequence of 
a balance between virus loads and cell lysis rates, leading 
to optimized virus spreading to new cells (Liu et al., 2001). 
Moderate virulence with high transmissibility results in a 
successful spread among the host population (Toro et al., 
2012b) and was thus advantageous for these virus populations.

These phenotypical traits were not based in the nsp3 region 
focused on in this study, as no polymorphic sites were found 
among all passages. Attenuation of the Beaudette strain 
can be tracked to the replicase polyprotein, which includes 
nsp3 and an additional 14 NSPs, especially nsp3, as this 
protein may have a role in pathogenicity (Armesto et al., 
2009; Phillips et al., 2012).

On the other hand, although nsp3 contains the 
active PLpro site that cleaves the N-terminal region 
(between NSPs 2-3 and 3-4) of the replicase polyprotein 
(Ziebuhr  et  al., 2000) and, thus, a relatively conserved 
sequence due to high structural constraint expected for 
this region, replication might not be affected by some 
mutations in nsp3 (Keep et al., 2018).

However, for the partial region of the S1 subunit of the 
S protein, nonsynonymous mutations and minor variants 
were found when the different passages were compared. 
This result is relevant, as S1 is responsible for IBV tropism 
(Casais et al., 2003) because it harbors the receptor-binding 
domain (RBD) (Promkuntod  et  al., 2014) and plays a 
role in pathogenicity (Ziebuhr et al., 2000), with a high 

Figure 7 – Tertiary protein structures from partial S1 subunit of S gene of the Beaudette strain of IBV (nt 43 to 671; aa 15 to 223) 
at BHK-21 passages 3 (white), 4 (light gray) and 8 (dark gray); (A) point mutations in position 53, serine (yellow), 
phenylalanine (purple) and tyrosine (red), respectively; (B) point mutations in position 95, serine (blue) and arginine 
(green), respectively. Positions in reference to GenBank accession number: NC001451.1.
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level of variation among IBV strains (Casais et al., 2003; 
Wickramasinghe et al., 2011; Shan et al., 2018).

Specific signatures in S1 have been described as 
responsible for the ability of the Beaudette strain to grow in 
Vero cells (Bickerton et al., 2018), and even a single amino 
acid change in S1 can affect the infectivity of this strain 
(Promkuntod et al., 2014; Shan et al., 2018). Furthermore, 
there is evidence that the S gene displays the most frequent 
recombination breakpoints responsible for the spillover of 
SARS (Cui et al., 2019; Shan et al., 2018).

The nonsynonymous mutations found in this study map 
are within the RBD, but only those in position 53 of passages 
in BHK-21 cells are within the region considered determinant 
for receptor binding, named the HVR (hypervariable region) I 
(Promkuntod et al., 2014; Leyson et al., 2016; Shan et al., 2018). 
However, all the mutations found in this study did not agree 
with the mutations found in other studies with the Beaudette 
strain in Vero cells (Armesto et al., 2009; Bickerton et al., 2018; 
Fang et al., 2005; Shan et al., 2018; Youn et al., 2005).

The presence of minor variants is a characteristic of RNA 
viruses due to imperfect proofreading during replication, 
which results in a quasispecies population pattern after the 
accumulation of genomic mutations (Domingo et al., 2012). 
Jackwood  et  al. (2003) found quasispecies in Beaudette 
based on different melting peaks after RT-qPCR, but 
chromatogram peak-based quasispecies detection has also 
been reported for IBV (Toro et al., 2012b).

As seen in Table 3, quasispecies reverted to the original 
state observed in the ECE strain at passage 12 in Vero 
cells based on nt 448, but in BHK-21 cells, no reversion 
was found after passage 8. This diverse evolution in 
BHK-21 cells compared to that in Vero cells could be a 
further consequence of the already mentioned enhanced 
adaptability of the Beaudette strain in Vero cells and could 
result in fine-tuning of the quasispecies to the sialic acid 
receptors found in different cell types, as mutations in 
S1 have already been associated with the adaptation of 
AvCoV during passaging from chickens to embryos and 
back (Leyson et al., 2016; Winter et al., 2006; Li, 2016).

However, it is worth mentioning that in this study, a 
limited number of passages was carried out, which narrows 

the potential broadened understanding of the time and mode 
of IBV evolution and selection pressures for quasispecies, 
the target of natural selection for RNA viruses.

Partial S1 3-D modeling (Figures 6 and 7) showed local 
alterations in protein structure, which were most evident 
regarding aa residue 95 for the BHK-21 cell passages 
(Figure 7B). Considering that the spike is a trimer (Li, 2016; 
Walls et al., 2016), minor local structural changes could 
have their consequences amplified when the quaternary 
structure is considered.

While an indication of quasispecies evolution and 
markers of adaptation possibly related to the adaptation 
of the Beaudette strain to different cell lines was obtained 
during this study, it must be considered that only a fraction 
of nsp3 and the S gene has been sequenced for a limited 
number of passages and was based on Sanger sequencing 
only. Whole-genome high-throughput sequencing would 
allow an in-depth view with increased sensitivity not 
only of genetic markers for in vitro evolution but also of 
quasispecies.

In conclusion, IBV evolution takes different routes 
depending on the host cell, with detectable fluctuations in 
quasispecies affecting virus fitness as measured by virus loads.
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