Implicit modeling to detail the Temporal Conceptual Model of a Complex Area with remediation of Combined Plumes in the Metropolitan Region of São Paulo

Authors

DOI:

https://doi.org/10.11606/issn.2316-9095.v23-207070

Keywords:

Contaminated site management, Conceptual model, Complex areas, Combined plumes, Remediation, Implicit modeling

Abstract

There are contaminated properties and regions that have been named abroad as Complex Areas due to the existence of technical or non-technical challenges that require atypical strategies and timelines for their restoration. One such study area, with more than 20 years of environmental management, was subjected to Implicit Modelling to assist in the detailing and evaluation of its Temporal Conceptual Model. The results reinforced a clear and holistic understanding of its evolution and challenges, including the existence of Combined Plumes generated from distinctly source areas. Interventions in the area were confirmed to have benefited from regional understandings and aspects of Adaptive Management, such as the definition of intermediate objectives, continuous refinement of the conceptual model and remediation. It was concluded that recognizing Complex Areas and applying Adaptive Management has the potential to assist the management of more sites in Brazil. This is recommended to be done while taking into account local adaptations and considerations, such as: including in the definition of Complex Areas that the challenges should demonstrably present high complexity and require atypical times for restoration or rehabilitation (more than 15 years, in São Paulo); considering as a technical challenge the extensive mantle of weathering of humid tropical regions; considering as a technical and non-technical challenge the high number of unregistered catchment wells; considering as a non-technical challenge the existence of socioeconomic conflicts; evaluating, including with isotopic studies, the possible presence of Combined Plumes.

Downloads

Download data is not yet available.

References

Barbieri, C., Martins, V., Oliveira, C., Hart, S. (2022). Isótopos forenses nas investigações de poluição ambiental Isótopos forenses. In: Nardoto, G., Mayrink, R., Barbieri, C., Costa, F. (eds.), Isótopos Forenses. Campinas: Millennium.

Bertolo, R. (2017). Bases Técnicas Para a Gestão de Áreas Contaminadas Por Solventes Organoclorados Em aquíferos fraturados. Tese (Livre-Docência). São Paulo: Instituto de Geociências, USP. https://doi.org/10.11606/T.44.2018.tde-16032018-095039

Bertossi, A. P. A., Menezes, J. P. C., Cecílio, R. A., Oliveira Garcia, G., Neves, M. A. (2013). Seleção e agrupamento de indicadores da qualidade de águas utilizando Estatística Multivariada. Semina: Ciências Agrárias, 34(5), 2025-2036. https://doi.org/10.5433/1679-0359.2013v34n5p2025

Caumon, G., Gray, G., Antoine, C., Titeux, M. O. (2012). Three-dimensional implicit stratigraphic model building from remote sensing data on tetrahedral meshes: theory and application to a regional model of La Popa Basin, NE Mexico. IEEE Transactions on Geoscience and Remote Sensing, 51(3), 1613-1621. https://doi.org/10.1109/TGRS.2012.2207727

Conte, A., Chiaberge, S., Pedron, F., Barbafieri, M., Petruzzelli, G., Vocciante, M., Franchi E, Pietrini I. (2021). Dealing with complex contamination: A novel approach with a combined bio-phytoremediation strategy and effective analytical techniques. Journal of Environmental Management, 288, 112381. https://doi.org/10.1016/j.jenvman.2021.112381

CETESB – Companhia Ambiental do Estado de São Paulo (2017). Decisão de diretoria nº 038/2017/c, de 07 fevereiro de 2017. Procedimento para Gerenciamento de Áreas Contaminadas. CETESB. 65 p. Disponível em: https://cetesb.sp.gov.br/wp-content/uploads/2014/12/DD-038-2017-C.pdf. Acesso em: 31 maio 2023.

CETESB – Companhia Ambiental do Estado de São Paulo (2023). Relatório de Áreas Contaminadas e Reabilitadas no Estado de São Paulo. CETESB. Disponível em: https://mapas.infraestruturameioambiente.sp.gov.br/portal/apps/MapJournal/index.html?appid=28e7bb2238a443819447a8ec3ae4abe5. Acesso em: 15 jan. 2023.

Cowan, E. J., Beatson, R. K., Fright, W. R., McLennan, T. J., Mitchell, T. J. (2002). Rapid geological modelling. Applied Structural Geology for Mineral Exploration and Mining International Symposium. Extended Abstract. Austrália, p. 23-25. Disponível em: http://www.orefind.com/docs/orefind-research-papers-in-pdf/rapid_geological_modelling.pdf. Acesso em: 31 maio 2023.

Cowan, E. J., Beatson, R. K., Ross, H. J., Fright, W. R., McLennan, T. J., Evans, T. R., Carr, J. C., Lane, R. G., Bright, D. V., Gillman, A. J., Oshurst, P. A., Titley, M. (2003). Practical implicit geological modelling. 5th International Mining Geology Conference. Victoria, Austrália, p. 89-99. Disponível em: https://www.researchgate.net/publication/281685127_Practical_Implicit_Geological_Modelling. Acesso em: 31 maio 2023.

D’Affonseca, F. M., Finkel, M., Cirpka, O. A. (2020). Combining implicit geological modeling, field surveys, and hydrogeological modeling to describe groundwater flow in a karst aquifer. Hydrogeology Journal, 28, 2779-2802. https://doi.org/10.1007/s10040-020-02220-z

Dong, H., Xun, Y., Yoneda, M., Feng, L. (2021). Risk assessment of complex contaminated sites based on the fractional transformation of metals: Model development and a case study. Science of The Total Environment, 786, 147509. https://doi.org/10.1016/j.scitotenv.2021.147509

Elshall, A. S., Ye, M., Finkel, M. (2020). Evaluating two multi-model simulation-optimization approaches for managing groundwater contaminant plumes. Journal of Hydrology, 590, 125427. https://doi.org/10.1016/j.jhydrol.2020.125427

Fasshauer, G. E. (2007). Meshfree approximation methods with MATLAB (v. 6). Danders: World Scientific Publishing. https://doi.org/10.1142/6437

Gatsios, E., García-Rincón, J., Rayner, J. L., McLaughlan, R. G., Davis, G. B. (2018). LNAPL transmissivity as a remediation metric in complex sites under water table fluctuations. Journal of Environmental Management, 215, 40-48. https://doi.org/10.1016/j.jenvman.2018.03.026

Guo, J., Wang, X., Wang, J., Dai, X., Wu, L., Li, C., Jessell, M. (2021). Three-dimensional geological modeling and spatial analysis from geotechnical borehole data using an implicit surface and marching tetrahedra algorithm. Engineering Geology, 284, 106047. https://doi.org/10.1016/j.enggeo.2021.106047

Harclerode, M. A., Macbeth, T. W., Miller, M. E., Gurr, C. J., Myers, T. S. (2016). Early decision framework for integrating sustainable risk management for complex remediation sites: Drivers, barriers, and performance metrics. Journal of Environmental Management, 184(Part 1), 57-66. https://doi.org/10.1016/j.jenvman.2016.07.087

Hart, S. T. (2019). Desafios Técnicos: Monitoramento. XV Painel de Debates Sobre Gerenciamento de Áreas Contaminadas: Desafios e Responsabilidades no Atingimento das Metas de Remediação. São Paulo: Senac/Aesas.

Hart, S. T., Alves, F. M., Cho, J. (2007). Conceptual Model of Tropically Weathered and Fractured Crystalline Bedrock and its Implications for In Situ Chemical Oxidation. U.S. EPA/ NGWA Fractured Rock Conference: State of the Science and Measuring Success in Remediation, Portland, Main, p. 357-369. Disponível em: https://clu-in.org/products/siteprof/2007fracrock/053Hart,S.pdf. Acesso em: 31 maio 2023.

Hart, S. T., Bertolo, R. A., Agostini, M., Feig, R., Barbosa, M., Lojkasek-Lima, P. (2021). Temporal conceptual model of contaminated complex sites applied for the management of a former supply well area in tropically weathered bedrock. Sustainable Water Resources Management, 7, 11. https://doi.org/10.1007/s40899-021-00488-x

Hart, S. T., Bertolo, R. A., Agostini, M. S., Feig, R., Lojkasek-Lima, P., Gouvea Jr., J. C. R., Barreto, F. S., Aravena, R. (2022). Hydrogeochemical and isotopic evaluation of VOC commingled plumes in a weathered fractured bedrock aquifer treated with thermal and bioremediation. Journal of Contaminant Hydrology, 245, 103940. https://doi.org/10.1016/j.jconhyd.2021.103940

ITRC – Interstate Technology Regulatory Council (2017). Remediation Management of Complex Sites. ITRC. Disponível em: https://rmcs-1.itrcweb.org/. Acesso em: 15 jul. 2022.

Kikuda, A. T. (2022). Uso da função distância na modelagem geométrica de corpos de minério e proposta da distância estratigráfica aplicada ao cálculo de variogramas experimentais. Tese (Doutorado). São Paulo: Instituto de Geociências, USP. https://doi.org/10.11606/T.44.2022.tde-18112022-095005

Kresic, N., Mikszewski, A. (2013). Hydrogeological Conceptual Site Models: Data Analysis and Visualization. Nova York: CRC Press.

Lojkasek-Lima, P. (2018). Caraterização de Detalhe do Perfil Vertical de Contaminação em Aquífero Cristalino Alterado: Aplicação da Metodologia “Discrete Fracture Network” (DFN) – Jurubatuba, São Paulo. Tese (Doutorado). São Paulo: Instituto de Geociências, USP. https://doi.org/10.11606/T.44.2018.tde-03082020-112622

Marryott, R. A., Sabadell, G. P., Ahlfeld, D. P., Harris, P. H., Pinder, G. F. (2000). Allocating Remedial Costs at Superfund Sites with Commingled Groundwater Contaminant Plumes. Environmental Forensics, 1(1), 47-54. https://doi.org/10.1006/enfo.1999.0006

Moraes, S. L., Teixeira, C. E., Maximiano, A. M. S. (eds.) (2014). Guia de elaboração de planos de intervenção para o gerenciamento de áreas contaminadas. São Paulo: IPT e BNDES.

NJ DEP – New Jersey Department of Environmental Protection (2017). Commingled Plume Technical Guidance Document, v. 1. Nova Jérsei: NJ DEP. 105 p. Disponível em: https://www.nj.gov/dep/srp/guidance/archive/commingled_plume_guidance_v1_0_201704.pdf. Acesso em: 31 maio 2023.

NRC – National Research Council (2003). Environmental Cleanup at Navy Facilities: Adaptive Site Management. Washington, D.C.: The National Academies Press. https://doi.org/10.17226/10599

NRC – National Research Council (2013). Alternatives for Managing the Nation’s Complex Contaminated Groundwater Sites: Committee on Future Options for Management in the Nation’s Subsurface Remediation Effort. Washington, D.C.: The National Academies Press. https://doi.org/10.17226/14668

Pereira, P. E. C., Rabelo, M. N., Ribeiro, C. C., Diniz-Pinto, H. S. (2017). Geological modeling by an indicator kriging approach applied to a limestone deposit in Indiara city, Goiás. REM, International Engineering Journal, 70(3), 331-337. https://doi.org/10.1590/0370-44672016700113

Price, J., Spreng, C., Hawley, E. L., Deeb, R. (2017). Remediation management of complex sites using an adaptive site management approach. Journal of Environmental Management, 204(Part 2), 738-747. https://doi.org/10.1016/j.jenvman.2017.04.009

Sale, T., Newell, C. (2011). A Guide for Selecting Remedies for Subsurface Releases of Chlorinated Solvents. EUA: Department of Defense Environmental Security Technology Certification Program (ESTCP). 134 p. Disponível em: https://clu-in.org/download/contaminantfocus/dnapl/treatment_technologies/dnapl-er-200530-dg.pdf. Acesso em: 31 maio 2023.

Schultz, A. C. (2001). The Conceptual Site Model — Not Just Another Pretty Face, Technical developments. Environmental Claims Journal, 13(3), 113-120. https://doi.org/10.1080/10406020109355177

Seequent (2017). User Manual for Leapfrog Works. Seequent, 750 p. Disponível em: https://help.seequent.com/Works/3.1/en-GB/LeapfrogWorksUserManual.pdf. Acesso em: 16 out. 2022.

Seequent (2020). Comparing leapfrog radial basis function and kriging. Seequent. Disponível em: https://www.seequent.com/comparing-leapfrog-radial-basis-function-and-kriging/. Acesso em: 25 abr. 2021.

Teixeira, C. E., Motta, F. G., Moraes, S. L. (2016). Panorama do setor de gerenciamento de áreas contaminadas no Brasil. São Paulo: IPT. Disponível em: http://www.ipt.br/centros_tecnologicos/CTGeo/livros/60-panorama_do_setor_de_gerenciamento_de_areas_contaminadas_no_brasil.htm. Acesso em: 31 maio 2023.

Teixeira, L. G. P., Abreu, A. E. S. (2018). Aplicação da Análise Isotópica de Composto Específico (Técnica CSIA) em Perícias Ambientais para Distinguir Diferentes Fontes de Contaminação. Revista do Instituto Geológico, 39(1), 31-41. https://doi.org/10.5935/0100-929X.20180003

Vaz, L. F. (1996). Classificação genética dos solos e dos horizontes de alteração de rocha em regiões tropicais. Revista Solos e Rochas, 19(2), 117-136.

Vogel, C. (2015). Defense Environmental Restoration Program (DERP) Study. Presentation to the Interstate Technology & Regulatory Council Remediation Management of Complex Sites (RMCS) Team.

Vollgger, S. A., Cruden, A. R., Ailleres, L., Cowan, E. J. (2015). Regional dome evolution and its control on oregrade distribution: Insights from 3D implicit modelling of the Navachab gold deposit, Namibia. Ore Geology Reviews, 69, 268-284. https://doi.org/10.1016/j.oregeorev.2015.02.020

Zhong, D., Wang, L., Lin, B., Jia, M. (2019). Implicit modelling of complex orebody with constraints of geological rules. Transactions of Nonferrous Metals Society of China, 29(11), 2392-2399. https://doi.org/10.1016/S1003-6326(19)65145-9

Published

2023-09-05

Issue

Section

Articles

How to Cite

Hart, S. T. ., Bertolo, R. A. ., Feig, R. ., Barreto, F. S. ., Di Giovanni, J. C. D. G., Gouvêa Júnior, J. C. R. ., & Agostini, M. S. . (2023). Implicit modeling to detail the Temporal Conceptual Model of a Complex Area with remediation of Combined Plumes in the Metropolitan Region of São Paulo. Geologia USP. Série Científica, 23(3), 57-70. https://doi.org/10.11606/issn.2316-9095.v23-207070