Controles hidroquímicos na deposição de tufas em drenagens na Serra do André Lopes (SP, Brasil)

Autores

DOI:

https://doi.org/10.11606/issn.2316-9095.v24-211685

Palavras-chave:

Carbonatos continentais, Tufa, Carste, Hidroquímica, Isótopos, Serra do André Lopes

Resumo

A Serra do André Lopes localiza-se em um planalto cárstico composto por dolomitos (Mármore da Tapagem) no estado de São Paulo, Brasil. Na superfície, a água que escoa sobre as rochas carbonáticas é rica em carbonato de cálcio, o que possibilita a deposição de tufas. Para que ocorra essa deposição, a água deve ser cristalina, sem sedimentos em suspensão, que possa inibir a precipitação dos carbonatos e ter alta concentração de carbonato de cálcio dissolvido. Foram coletadas amostras de águas fluviais em 14 locais da Serra do André Lopes e região, para a análise de parâmetros hidroquímicos e isotópicos. A análise hidroquímica mostrou que essas águas têm alto teor de carbonato de cálcio (média de 179 mg/L), alta razão Mg/Ca (média de 0,88) e altos valores de pH (entre 8,18 e 8,71) e índice de saturação em relação à calcita (entre 0,1 e 1,04). A maioria das amostras das águas foram classificadas como cálcio magnesianas carbonatadas. Com base nos resultados foi possível concluir que as águas das drenagens onde ocorrem os depósitos de tufa são provenientes de recarga autóctone, com pouca ou nenhuma influência de águas alogênicas (provenientes de áreas não carbonáticas), sendo o fator preponderante para a deposição de tufas na região. Os resultados das análises isotópicas de d18O da água e do carbonato de cálcio das tufas mostraram que a influência da evaporação é praticamente nula na precipitação de calcita. A observação da deposição de tufa em equilíbrio isotópico, mostra que potenciais registros paleoclimáticos obtidos a partir dos depósitos antigos são relevantes.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22 (6), 711-728. https://doi.org/10.1127/0941-2948/2013/0507

Arenas-Abad, C., Vázquez-Urbez, M., Pardo-Tirapu, G., Sancho-Marcén, C. (2010). Fluvial and Associated Carbonate deposits. In: Alonso-Zarza, A.M., Tanner, L.H. (Eds.) Carbonates in Continental Settings: Facies, Environments and Process. Developments in Sedimentology, 61, 133-175. Amsterdam: Elsevier. https://doi.org/10.1016/S0070-4571(09)06103-2

Arp, G., Reimer, A., Reitner, J. (2001). Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science, 292, 1701-1704. https://doi.org/10.1126/science.1057204

Andrews, J. E. (2006). Paleoclimatic records from stable isotopes in riverine tufas: Synthesis and review. Earth-Science Reviews, 75, 85-104. https://doi.org/10.1016/j.earscirev.2005.08.002

Barešić, J., Horvatinĉić, N., Roller-Lutz, Z. (2011). Spatial and seasonal variations in the stable C isotope composition of dissolved inorganic carbon and in physico-chemical water parameters in the Plitvice Lakes system. Isotopes in Environmental and Health Studies, 47(3), 316-329. https://doi.org/10.1080/10256016.2011.596625

Boggiani, P. C., Coimbra, A. M., Gesicki, A.L.D., Sial, A. N., Ferreira, V. P., Ribeiro, F. B., Flexor, J. M. (2002). Tufas Calcárias da Serra da Bodoquena, MS: cachoeiras petrificadas ao longo dos rios. In: Schobbenhaus, C., Campos, D. A., Queiroz, E. T., Winge, M., Berbert-Born, M. (Eds.) Sítios Geológicos e Paleontológicos do Brasil, 1, 249-259. Brasília: DNPM. Disponível em: https://rigeo.sgb.gov.br/handle/doc/19846. Acesso em: 23 jan. 2024.

Brasier, A. T., Andrews, J. E., Marca-Bell, A. D., Dennis, P. F. (2010). Depositional continuity of seasonally laminated tufas: Implications for d18O based palaeotemperatures. Global and Planetary Change, 71, 160-167. https://doi.org/10.1016/j.gloplacha.2009.03.022

Campanha, G. A. C. (1992). Tectônica Proterozóica no Alto e Médio Vale do Ribeira, Estados de São Paulo e Paraná. Tese (Doutorado). São Paulo: Instituto de Geociências - USP. https://doi.org/10.11606/T.44.1992.tde-13032013-115922

Campanha, G. A. C. (2002). O papel do sistema de zonas de cisalhamento transcorrentes na configuração da porção meridional da Faixa Ribeira. Tese (Livre-Docência). São Paulo: Instituto de Geociências - USP. https://doi.org/10.11606/T.44.2009.tde-16122009-094247

Campanha, G. A. C., Gimenez Filho, A., Caetano, S. L. V., Pires, F. A., Dantas, A. S. L., Teixeira, A. L., Dehira, L. K. (1985). Geologia das folhas Iporanga (SG-22-X-B-V-2) e Gruta do Diabo (SG-22-X-B-VI-1), Estado de São Paulo. São Paulo: PROMINÉRIO / IPT, 1985. Relatório 22.352

Carthew, K. D., Taylor, M. P., Drysdale, R. N. (2003). Are current models of tufa sedimentary environments applicable to tropical systems? A case study from the Gregory River. Sedimentary Geology, 162(3-4), 199-218. https://doi.org/10.1016/S0037-0738(03)00151-9

Chen, J., Zhang, D. D., Wang, S., Xiao, T., Huang, R. (2004). Factors controlling tufa deposition in natural Waters at waterfall sites. Sedimentary Geology, 166, 353-366. https://doi.org/10.1016/j.sedgeo.2004.02.003

Cordeiro, B. M. (2013). Planalto carbonático do André Lopes (SP): geomorfologia cárstica e geoespeleologia da Gruta da Tapagem (Caverna do Diabo). Dissertação (Mestrado). São Paulo: Instituto de Geociências - USP. https://doi.org/10.11606/D.44.2013.tde-15122014-153934

Craig, H. (1961). Isotopic Variations in Meteoric Waters. Science, 133(3465), 1702-1703. https://doi.org/10.1126/science.133.3465.1702

Cruz Jr., F. W., Karmann, I., Magdaleno, G. B., Coichev, N., Viana Jr., O. (2005). Influence of hydrological and climatic parameters on spatial–temporal variability of fluorescence intensity and DOC of karst percolation waters in the Santana Cave System, Southeastern Brazil. Journal of Hydrology, 302, 1-12. https://doi.org/10.1016/j.jhydrol.2004.06.012

Faleiros, F. M., Morais, S. M., Costa, V. S. (2012). Unidades litoestratigráficas. In: Faleiros, F. M. e Costa, V. S. (Orgs.). Geologia e recursos minerais da folha Apiaí, SG.22-X-B-V, estados de São Paulo e Paraná, Escala 1:100.000. SGB-CPRM, São Paulo, 107 p. Disponível em: https://rigeo.sgb.gov.br/handle/doc/11366. Acessado em: 23 jan. 2024.

Faleiros, F. M., Morais, S. M., Costa, V. S. (2013). Unidades litoestratigráficas. In: Faleiros, F. M., Costa, V. S. (Orgs.). Geologia e recursos minerais da folha Eldorado, SG.22-X-B-VI, estados de São Paulo e Paraná, Escala 1:100.000. SGB-CPRM, São Paulo, 128 p. Disponível em: https://www.sgb.gov.br/publique/media/geologia_basica/pgb/rel_eldorado_paulista.pdf. Acessado em: 23 jan. 2024.

Fairchild, I. J., Baker, A. (2012). Speleothem Science: From Process to Past Environments. Birmingham: Wiley-Blackwell. https://doi.org/10.1002/9781444361094

Folk, R. L. (2007). Interaction Between Bacteria, Nannobacteria, and Mineral Precipitation in Hot Springs of Central Italy. Géographie Physique et Quaternaire, 48(3), 233-246. https://doi.org/10.7202/033005ar

Ford D. C., Williams P. W. (2007). Karst Hydrogeology and Geomorphology. Chichester: Wiley. https://doi.org/10.1002/9781118684986

Ford, T. D., Pedley, H. M. (1996) A review of tufa and travertine deposits of the world. Earth Science Reviews, 41, 117-175. https://doi.org/10.1016/S0012-8252(96)00030-X

Frascá, M. H. B. O. (1993). Petrografia e geoquímica de rochas carbonáticas pré-cambrianas do estado de São Paulo. Dissertação (Mestrado). São Paulo: Instituto de Geociências - USP. https://doi.org/10.11606/D.44.1993.tde-20082013-090303

Hays, P., Grossman, E. (1991). Oxygen isotopes in meteoric calcite cements as indicators of continental paleoclimate. Geology, 19(5), 441-444. https://doi.org/10.1130/0091-7613(1991)019<0441:OIIMCC>2.3.CO;2

Hypolito, R., Andrade, S., Silva, L. H., Nascimento, S. C. (2008). Alcalinidade – metodologia para determinação em campo. Analytica, 35, 52-61. Disponível em: https://repositorio.usp.br/directbitstream/23357ece-74fc-45d5-9a6f-a44a3001c670/3162099.pdf. Acesso em: 24 abr. 2024.

IGC - Instituto Geográfico e Cartográfico (1989). Projeto Vale do Ribeira II: mapas topográficos. Escala 1:10.000. São Paulo: Secretaria de Gestão e Governo Digital.

Ihlenfeld, C., Norman, M. D., Gagan, M. K., Drysdale, R. N., Maas, R., Webb, J. (2003). Climatic significance of seasonal trace element and stable isotope variations in a modern freshwater tufa. Geochimica et Cosmochimica Acta, 67(13), 2341-2357. https://doi.org/10.1016/S0016-7037(02)01344-3

Karmann, I. (1994). Evolução e dinâmica atual do Sistema Cárstico do Alto Vale do Ribeira de Iguape, sudeste do Estado de São Paulo. Tese (Doutorado). São Paulo: Instituto de Geociências - USP. https://doi.org/10.11606/T.44.1994.tde-22042013-163755

Karmann, I., Cruz Jr., F. W., Viana Jr., O., Burns, S. J. (2007). Climate influence on geochemistry parameters of waters from Santana-Pérolas cave system, Brazil. Chemical geology, 244, 232-247. https://doi.org/10.1016/j.chemgeo.2007.06.029

Langmuir, D. (1971). The Geochemistry of some Carbonate Groundwaters in Central Pensylvania. Geochimica Cosmochimica Acta, 35 (10), 1023-1045. https://doi.org/10.1016/0016-7037(71)90019-6

Matsuoka, J., Kano, A., Oba, T., Watanabe, T., Sakai, S., Seto, K. (2001). Seasonal variation of stable isotopic compositions recorded in a laminated tufa, SW Japan. Earth and Planetary Science Letters, 192, 31-44. https://doi.org/10.1016/S0012-821X(01)00435-6

O'Neil, J. R., Clayton, R. N., Mayeda, T. K. (1969). Oxygen isotope fractionation in divalent metal carbonates. Journal of Chemical Physics, 51, 5547-5558. https://doi.org/10.1063/1.1671982

Pentecost, A. (2005) Travertine. Berlin: Springer-Verlag. https://doi.org/10.1007/1-4020-3606-X

Pentecost, A., Viles, H. (1994). A review and reassessment of travertine classification. Geographie Physique et Quaternaire, 48(3), 305-314. https://doi.org/10.7202/033011ar

Ribeiro, L. M. A. L., Sawakuchi, A. O., Wang, H., Sallun Filho, W., Nogueira, L. (2015). OSL dating of Brazilian fluvial carbonates (tufas) using detrital quartz grains. Quaternary International, 362, 146-156. https://doi.org/10.1016/j.quaint.2014.11.029

Rozanski, K., Araguás-Araguás, L., Gonfiantini, R. (1993). Isotopic patterns in modern global precipitation. In: Swart, P. K., Lohmann, K. C., Mckenzie, J., Savin, S. (Eds.) Climate change in continental isotopic records, Geophysical Monograph Series, (Vol. 78). Washington, DC: American Geophysical Union. https://doi.org/10.1029/GM078p0001

Sallun Filho, W., Karmann, I., Boggiani, P. C., Petri, S., Cristalli, P. S., Utida, G. (2009). A deposição de tufas quaternárias no estado de Mato Grosso do Sul: proposta de definição da formação Serra da Bodoquena. Geologia USP. Série Científica, 9, 47-60. https://doi.org/10.5327/Z1519-874X2009000300003

Sallun Filho, W., Almeida, L. H. S., Boggiani, P. C., Karmann, I. (2012). Characterization of quaternary tufas in the Serra do André Lopes karst, southeastern Brazil. Carbonates and evaporites, 27(3-4), 357-373. https://doi.org/10.1007/s13146-012-0118-1

Sallun Filho, W., Cordeiro, B. M., Karmann, I. (2015). Structural and hydrological controls on the development of a river cave in marble (Tapagem Cave, SE Brazil). International Journal of Speleology, 44, 75-90. https://doi.org/10.5038/1827-806X.44.1.7

Silva, A. T. S. F., Francisconi, O., Godoy, A. M., Batolla Jr., F. (1981). Projeto integração e detalhe geológico no Vale do Ribeira: Relatório Final - Integração geológica. Vol. 1, São Paulo, SP, Brasil, CPRM, 15v.

Tonjes, D. J., Heil, J. H., Black, J. A. (1995). A Sophisticated Ground Water Analytical Tool. Ground Water Monitoring and Remediation, 15(2), 134-139. https://doi.org/10.1111/j.1745-6592.1995.tb00524.x

Vázquez-Urbez, M., Arenas, C., Sancho, C., Osácar, C., Auqué, L., Pardo, G. (2010). Factors controlling present-day tufa dynamics in the Monasterio de Piedra Natural Park (Iberian Range, Spain): Depositional environmental settings, sedimentation rates and hydrochemistry. International Journal of Earth Science, 99, 1027-1049. https://doi.org/10.1007/s00531-009-0444-2

Viana Júnior, O. (2002). Hidroquímica, hidrologia e geoquímica isotópica (O e H) de fácies de percolação vadosa autogênica, Caverna Santana, Município de Iporanga, Estado de São Paulo. Dissertação (Mestrado). São Paulo: Instituto de Geociências - USP. https://doi.org/10.11606/D.44.2002.tde-14102015-142037

Viles, H. A., Pentecost, A. (2007). Tufa and travertine. In: Nash, D., Mclaren, S. (Eds), Geochemical Sediments and Landscapes, 173-199. Oxford: Blackwell Publishing. https://doi.org/10.1002/9780470712917.ch6

Yoshimura, K., Liu, Z., Cao, J., Yuan, D., Inokura, Y., Noto, M. (2004). Deep source CO2 in natural waters and its role in extensive tufa deposition in the Huanglong Ravines, Sichuan, China. Chemical Geology, 205, 141-153. https://doi.org/10.1016/j.chemgeo.2004.01.004

White, W. B. (1988). Geomorphology and Hydrology of Karst terrains. Oxford: Oxford University Press.

Winston, R. B. (2000). Graphical User Interface for MODFLOW, Version 4. U.S. Geological Survey Open-File Report 00-315, 27 p.

Downloads

Publicado

2024-05-15

Edição

Seção

Artigos

Como Citar

Almeida, L. H. S., Sallun Filho, W., & Karmann, I. (2024). Controles hidroquímicos na deposição de tufas em drenagens na Serra do André Lopes (SP, Brasil). Geologia USP. Série Científica, 24(1), 87-101. https://doi.org/10.11606/issn.2316-9095.v24-211685