Immunology in diagnosis, pathogenesis, treatment and prevention by vaccines for COVID-19

Authors

DOI:

https://doi.org/10.14201/reb20229194556

Keywords:

COVID-19, SARS-CoV-2, Immunology, Brazil

Abstract

The COVID-19 pandemic, caused by SARS-CoV-2, highlighted the risks, more and more frequently, from the significant changes on Earth. Global warming, which alters ecosystems, and increased mobility by promoting rapid and regular contact between populations in different regions, are implicated in the emergence of epidemic outbreaks and pandemics. Throughout the COVID-19 pandemic, science played a prominent role. The role of science has been very much in evidence in several fields. In biology, it promoted the rapid knowledge of SARS-CoV-2, in epidemiology, by studying patterns of virus transmission and spread of infection. Mathematics and physics contributed to the elaboration of models to predict the evolution of the disease and the impact of non-pharmacological measures of containment, e.g. In multiple specialties, the health sciences such as medicine, physiotherapy, and nursing, among others, were in evidence. In this text, we highlight the contribution of immunology through its role in the fields of diagnosis, understanding the mechanisms of disease, which lead to more efficient treatment methods, and the development of vaccines capable of protecting against COVID-19.

Downloads

Download data is not yet available.

References

Barnes, B. J., Adrover, J. M., Baxter-Stoltzfus, A., Borczuk, A., Cools-Lartigue, J., Crawford, J. M., Daßler-Plenker, J., Guerci, P., Huynh, C., Knight, J. S., Loda, M., Looney, M. R., McAllister, F., Rayes, R., Renaud, S., Rousseau, S., Salvatore, S., Schwartz, R.E., Spicer, J. D., Yost, C. C., Weber, A, Zuo, Y., & Egeblad, M. (2020). Targeting potential drivers of COVID-19: neutrophil extracellular traps. Journal of Experimental Medicine, 217(6). Recuperado em 21 de novembro de 2021 de https://doi.org/10.1084/jem.20200652.

Barral-Netto, M., Barreto, M. L., Pinto Junior, E. P. & Aragão, E. (Orgs.) (2020). Construção de conhecimento no curso da pandemia de covid-19: aspectos biomédicos, clínico-assistenciais, epidemiológicos e sociais. Aspectos biomédicos (Vol. 1). Salvador: EDUFBA. Recuperado em 21 de novembro de 2021 de https://repositorio.ufba.br/ri/handle/ri/32370.

Barreto, M. L., Pinto Junior, E. P., Aragão, E. & Barral-Netto, M. (Orgs.) (2021). Construção de conhecimento no curso da pandemia de COVID-19: aspectos biomédicos, clínico-assistenciais, epidemiológicos e sociais. Aspectos assistenciais, epidemiológicos e sociais (Vol. 2). Salvador: EDUFBA. Recuperado em 21 de novembro de 2021 de https://repositorio.ufba.br/ri/handle/ri/32942.

Bastard, P., Rosen, L. B., Zhang, Q., Michailidis, E., Hoffmann, H.-H., Zhang, Y., … Casanova, J.-L. (2020). Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science, 370(6515). Recuperado em 21 de novembro de 2021 de https://doi.org/10.1126/science.abd4585.

Baum, A., Fulton, B. O., Wloga, E., Copin, R., Pascal, K. E., Russo, V., Giordano, S., Lanza, K., Negron, N., Ni, M., Wei, Y., Atwal, G. S., Murphy, A. J., Stahl, N., Yancopoulos, G. D., & Kyratsous, C. A. (2020). Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science, 369(6506), 1014-1018. Recuperado em 21 de novembro de 2021 de https://doi.org/10.1126/science.abd0831.

Boaventura, V., Cerqueira-Silva, T., Santos, L. A., Oliveira, M. S., Khouri, R., Barral, A., & Barral-Netto, M. (2020). Testes diagnósticos na Covid-19. In Barral-Netto, M., Barreto, M. L., Pinto Junior, E. P. & Aragão, E. (Orgs.). Construção de conhecimento no curso da pandemia de covid-19: aspectos biomédicos, clínico-assistenciais, epidemiológicos e sociais. Aspectos biomédicos (Vol. 1, Cap. 8). Salvador: EDUFBA. Recuperado em 21 de novembro de 2021 de https://doi.org/10.9771/9786556300443.008.

Carvalho, T., Krammer, F., & Iwasaki, A. (2021). The first 12 months of COVID-19: a timeline of immunological insights. Nature Reviews Immunology, 21, 245-256. Recuperado em 21 de novembro de 2021 de https://doi.org/10.1038/s41577-021-00522-1.

Cerqueira-Silva, T., Andrade, A. B. M. D. G. de, Barral-Netto, M., Boaventura, V. (2020). Vacinas contra a infecção pelo SARS-CoV-2. In Barral-Netto, M., Barreto, M. L., Pinto Junior, E. P. & Aragão, E. (Orgs.). Construção de conhecimento no curso da pandemia de covid-19: aspectos biomédicos, clínico-assistenciais, epidemiológicos e sociais. Aspectos biomédicos (Vol. 1, Cap. 9). Salvador: EDUFBA. Recuperado em 21 de novembro de 2021 de https://doi.org/10.9771/9786556300443.009.

Chen, H., Wang, J., Su, N., Bao, X., Li, Y., & Jin, J. (2020). Simplified immune-dysregulation index: a novel marker predicts 28-day mortality of intensive care patients with COVID-19. Intensive Care Medicine 46, 1645-1647. Recuperado em 21 de novembro de 2021 de https://doi.org/10.1007/s00134-020-06114-2.

Channappanavar, R., Fett, C., Zhao, J., Meyerholz, D. K. & Perlman, S. (2014). Virus-specific memory CD8 T cells provide substantial protection from lethal severe acute respiratory syndrome coronavirus infection. Journal of Virology 88, 11034–11044 (2014).

Cohen, K. W., Linderman, S. L., Moodie, Z., Czartoski, J., Lai, L., Mantus, G., Norwood, C., Nyhoff, L. E., Edara, V. V., Floyd, K., Rosa S. C. de, Ahmed, H., Whaley, R., Patel, S. N., Prigmore, B., Lemos M. P., Davis, C. W., Furth, S., O’Keefe, J. B., Gharpure, M. P., Gunisetty, S., Stephens, K., Antia, R., Zarnitsyna, V., Stephens, D. S., Edupuganti, S., Rouphael, N., Anderson, E. J., Mehta, A. K., Wrammert, J., Suthar, M. S., Ahmed, R., & McElrath, M. J. (2021). Longitudinal analysis shows durable and broad immune memory after SARS-CoV-2 infection with persisting antibody responses and memory B and T cells. Cell Reports Medicine, 2(7). Recuperado em 21 de novembro de 2021 de https://doi.org/10.1016/j.xcrm.2021.100354.

Dandekar, A. A., & Perlman, S. (2005). Immunopathogenesis of coronavirus infections: implications for SARS. Nature Reviews Immunology, 5(12), 917-927. Recuperado em 21 de novembro de 2021 de https://doi.org/10.1038/nri1732.

Escobar, L. E., Molina-Cruz, A., & Barillas-Mury, C. (2020). BCG vaccine protection from severe coronavirus disease 2019 (COVID-19). Proceedings of the National Academy of Sciences, 177(30), 17720-17726. Recuperado em 21 de novembro de 2021 de https://doi.org/10.1073/pnas.2008410117.

Garcia, L. P., & Duarte, E. (2020). Infodemia: excesso de quantidade em detrimento da qualidade das informações sobre a COVID-19. Epidemiologia e Serviços de Saúde, 29(4). Recuperado em 21 de novembro de 2021 de https://doi.org/10.1590/s1679-49742020000400019

Hadjadj, J., Yatim, N., Barnabei, L., Corneau, A., Boussier, J., Smith, N., Péré, H., Charbit, B., Bondet, V., Chenevier-Gobeaux, C., Breillat, P., Carlier, N., Gauzit, R., Morbieu, C., Pène, F., Marin, N., Roche, N., Szwebel, T.-A., Merkling, S. H., Treluyer, J.-M., Veyer, D., Mouthon, L., Blanc, C., Tharaux, P.-L., Rozenberg, F., Finscher, A., Duffy, D., Rieux-Laucat, F., Kernéis, S., & Terrier, B. (2020). Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science, 369(6504), 718-724. Recuperado em 21 de novembro de 2021 de https://doi.org/10.1126/science.abc6027.

Hammoudeh, S. M., Hammoudeh, A. M., Bhamidimarri, P. M., Safar, H. A., Mahboub, B., Künstner, A., Busch, H., Halwani, R., Hamid, Q., Rahmani, M., & Hamoudi, R. (2021). Systems Immunology Analysis Reveals the Contribution of Pulmonary and Extrapulmonary Tissues to the Immunopathogenesis of Severe COVID-19 Patients. Frontiers in Immunology, 12. Recuperado em 21 de novembro de 2021 de https://doi.org/10.3389/fimmu.2021.595150.

Kurtz, P., Righy, C., Gadelha, M., Bozza, F. A., Bozza, P. T., Gonçalves, B., Bastos, L. S. L., Vale, A. M., Higa, L. M., Castilho, L., Monteiro, F. L., Charris, N., Fialho, F., Turon, R., Guterres, A., Miranda, R. L., Lima, C. H. de A., Caro, V. de, Prazeres, M. A., Ventura, N., Gaspari, C., Miranda, F., Mata, P. J. da, Pêcego, M., Mateos, S., Lopes, M. E., Castilho, S., Oliveira, Á., Boquimpani, C., Rabello, A., Lopes, J., Conceição Neto, O., Ferreira Jr., O. da, Tanuri, A., Niemeyer Filho, P., & Amorim, L. (2021). Effect of convalescent plasma in critically Ill patients with COVID-19: An Observational Study. Frontiers in Medicine, 8. Recuperado em 21 de novembro de 2021 de https://doi.org/10.3389/fmed.2021.630982.

Laing, A. G., Lorenc, A., Barrio, I. del M. del, Das, A., Fish, M., Monin, L., Muñoz-Ruiz, M., McKenzie, D. R., Hayday, T. S., Francos-Quijorna, I., Kamdar, S., Joseph, M., Davies, D., Davis, R., Jennings, A., Zlatareva, I., Vantourout, P., Wu, Y., Sofra, V., Cano, F., Greco, M., Theodoridis, E., Freedman, J. D., Gee, S., Chan, J. N. E., Ryan, S., Bugallo-Blanco, E., Peterson, P., Kisand, K., Haljasmägi, L., Chadli, L., Moingeon, P., Martinez, L., Merrick, B., Bisnauthsing, K., Brooks, K., Ibrahim, M. A. A., Mason, J., Gomez, F. L., Babalola, K., Abdul-Jawad, S., Cason, J., Mant, C., Seow, J., Graham, C., Doores, K. J., Di Rosa, F., Edgeworth, Shankar-Hari, M., & Hayday, A. C. (2020). A dynamic COVID-19 immune signature includes associations with poor prognosis. Nature Medicine, 26, 1623-1635. Recuperado em 21 de novembro de 2021 de https://doi.org/10.1038/s41591-020-1038-6.

Le Bert, N. et al. (2020). SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 584, 457-462.

Liu, J., Li, S., Liu, J., Liang, B., Wang, X., Wang, H., Li, W., Tong, Q., Yi, J., Zhao, L., Xiong, L., Guo, C., Tian, J., Luo, J., Yao, J., Pang, R., Shen, H., Peng, C., Liu, T., Zhang, Q., Wu, J., Xu, L., Lu, S., Wang, B., Weng, Z., Han, C., Zhu, H., Zhou, R., Zhou, H., Chen, X., Ye, P., Zhu, B., Wang, L., Zhou, W., He, S., He, Y., Jie, S., Wei, P., Zhang, J., Lu, Y., Wang, W., Zhang, L., Li, L., Zhou, F., Wang, J., Diftmer, U., Lu, M., Hu, Y., Yang, D., & Zheng, X. (2020). Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine, 55. Recuperado em 21 de novembro de 2021 de https://doi.org/10.1016/j.ebiom.2020.102763.

Love, J. S., Blumenberg, A., & Horowitz, Z. (2020). The parallel pandemic: medical misinformation and COVID-19. Journal of General Internal Medicine, 35(8), 2435-2436. Recuperado em 21 de novembro de 2021 de https://doi.org/10.1007/s11606-020-05897-w.

Mathew, D. et al. (2020). Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science 369(6508). Recuperado em 21 de novembro de 2021 de https://pubmed.ncbi.nlm.nih.gov/32669297/.

Menezes, S. M., Braz, M., Llorens-Rico, V., Wauters, J., & Weyenbergh, J. Van (2021). Endogenous IFNβ expression predicts outcome in critical patients with COVID-19. The Lancet Microbe, 2(6), e235–e236. Recuperado em 21 de novembro de 2021 de https://doi.org/10.1016/s2666-5247(21)00063-x.

Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., Manson, J. J., & UK, HLH Across Speciality Collaboration (2020). COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet, 39(10229), 1033-1034. Recuperado em 21 de novembro de 2021 de https://doi.org/10.1016/S0140-6736(20)30628-0.

Ng, O.-W. et al. (2016). Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine 34, 2008-2014.

Oliveira, J. F., Jorge, D. C. P., Veiga, R. V., Rodrigues, M. S., Torquato, M. F., Silva, N. B. da, & Andrade, R. F. S. (2021). Mathematical modeling of COVID-19 in 14.8 million individuals in Bahia, Brazil. Nature Communications, 12(1), 333. Recuperado em 21 de novembro de 2021 de https://doi.org/10.1038/s41467-020-19798-3.

Pereira, M., Paixão, E., Trajman, A., Souza, R. A. de, Natividade, M. S. da, Pescarini, J. M., Pereira, S. M., Barreto, F., R., Ximenes, R., Dalmcomo, M., Ichihara, M. Y., Nunes, C., Barral-Netto, M., & Barreto, M. L. (2020). The need for fast-track, high-quality and low-cost studies about the role of the BCG vaccine in the fight against COVID-19. Respiratory Research, 21(1), 178. Recuperado em 21 de novembro de 2021 de https://doi.org/10.1186/s12931-020-01439-4.

Piechotta, V., Chai, K. L., Valk, S. J., Doree, C., Monsef, I., Wood, E. M., Lamikanra, A., Kimber, C., McQuilten, Z., So-Osman, C., Estcourt, L. J., & Skoetz, N. (2020). Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a living systematic review. Cochrane Database of Systematic Reviews, 7(7). Recuperado em 21 de novembro de 2021 de https://doi.org/10.1002/14651858.cd013600.pub2.

RECOVERY (2021). RECOVERY trial closes recruitment to convalescent plasma treatment for patients hospitalised with COVID-19. Recuperado em 21 de novembro de 2021 de https://www.recoverytrial.net/news/statement-from-the-recovery-trial-chief-investigators-15-january-2021-recovery-trial-closes-recruitment-to-convalescent-plasma-treatment-for-patients-hospitalised-with-covid-19.

Rosa, M. F. F., Silva, E. N. da, Pacheco, C., Diógenes, M. V. P., Millett, C., Gadelha, C. A. G., & Santos, L. M. P. (2021). Direct from the COVID-19 crisis: research and innovation sparks in Brazil. Health Research Policy and Systems, 19(1), 10. Recuperado em 21 de novembro de 2021 de https://doi.org/10.1186/s12961-020-00674-x.

Santos, T, de A., Tavares, N. M., & Mengel, J. (2020). Imunopatogênese da COVID-19. In Barral-Netto, M., Barreto, M. L., Pinto Junior, E. P. & Aragão, E. (Orgs.). Construção de conhecimento no curso da pandemia de covid-19: aspectos biomédicos, clínico-assistenciais, epidemiológicos e sociais. Aspectos biomédicos (Vol. 1, Cap. 9). Salvador: EDUFBA. Recuperado em 21 de novembro de 2021 de https://doi.org/10.9771/9786556300443.005.

Valle, D. M. D. et al. (2020). An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med 26, 1636-1643 (2020). Recuperado em 21 de novembro de 2021 de 10.1038/s41591-020-1051-9

Zhang, Q., Bastard, P., Liu, Z., Pen, J. Le, Moncada-Velez, M., Chen, J., … Casanova, J.-L. (2020). Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science, 370(6515). Recuperado em 21 de novembro de 2021 de https://doi.org/10.1126/science.abd4570.

Zhao, J. et al. (2016). Airway memory CD4 + T cells mediate protective immunity against emerging respiratory coronaviruses. Immunity, 44, 1379-1391.

Zimmer, C., Corum, J., Wee, S.-L., & Kristoffersen, M. (2021). Coronavirus vaccine tracker. Recuperado em 21 de novembro de 2021 de https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html.

Published

2023-08-25

How to Cite

Immunology in diagnosis, pathogenesis, treatment and prevention by vaccines for COVID-19. (2023). Revista De Estudios Brasileños, 9(19), 45-56. https://doi.org/10.14201/reb20229194556