Cycle ergometer in the improvement of gross motor function of children with cerebral palsy

a systematic review with meta-analysis

Authors

DOI:

https://doi.org/10.1590/1809-2950/18011026012019

Keywords:

Exercise, Cerebral Palsy, Randomized Controlled Trial

Abstract

Cerebral palsy is a group of neurological disorders that causes innumerable deficits, mainly related to motor function, compromising movements and their selective control. Among the various therapies available to try to soften this process, the cycle ergometer appears as a stationary apparatus that aims to facilitate the movement of the lower limbs. Therefore, this study aimed to analyze the effects of the cycle ergometer on the gross motor function of children with cerebral palsy by the Gross Motor Function Measure (GMFM-66) scale. This was a systematic review, with inclusion of randomized clinical trials published until July 2017. The search was performed in MEDLINE (PubMed), Physiotherapy Evidence Database (PEDro), SciELO, and Embase. The Cochrane Handbook Scale was used to evaluate the methodological quality of the investigations. We selected articles that applied the cycle ergometer in children with cerebral palsy, compared to children with cerebral palsy in the control group or other intervention, and that assessed gross motor function with GMFM. The review included three articles and a total of 127 patients. The results have shown a not statistically significant increase in GMFM-66 values, not relevant for clinical improvement. This systematic review has found great heterogeneity in the studies addressing this area and, despite the increase in values in the group that used the cycle ergometer, there was no statistical difference compared to the control group, showing that it does not benefit the gross motor function of this population, when evaluated by GMFM-66.

Downloads

Download data is not yet available.

References

Colver A, Fairhurst C, Pharoah PO. Cerebral palsy. Lancet.

;383(9924):1240-9. doi: 10.1016/S0140-6736(13)61835-8

Guimarães CL, Pizzolatto TO, Coelho AS, Freitas ST. Aspectos

clínicos epidemiológicos de crianças com paralisia cerebral

assistidas pela clínica escola de Fisioterapia Unip – São José

dos Campos. J Health Sci Inst. 2014;32(3):281-5.

Trønnes H, Wilcox AJ, Lie RT, Markestad T, Moster D. Riskof

cerebral palsy in relation to pregnancy disorders and

preterm birth: a national cohort study. Dev Med Child Neurol.

;56(8):779-85. doi: 10.1111/dmcn.12430

Reddihough, DS, Collins, KJ. The epidemiology and causes of

cerebral palsy. Aust J Physiother. 2003;49(1):7-12. doi: 10.1016/

S0004-9514(14)60183-5

Nooijen C, Slaman J, van der Slot W, Stam H, Roebroeck

M, van den Berg-Emons R, et al. Health-related physical

fitness of ambulatory adolescents and young adults with

spastic cerebral palsy. J Rehabil Med. 2014;46 (7):642-7. doi:

2340/16501977-1821

Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M,

Damiano D, et al. A report: the definition and classification

of cerebral palsy April 2006. Dev Med Child Neurol Suppl.

;109:8-14. doi: 10.1111/j.1469-8749.2007.tb12610.x

García CC, Alcocer-Gamboa A, Ruiz MP, Caballero

IM, Faigenbaum AD, Esteve-Lanao J, et al. Metabolic,

cardiorespiratory, and neuromuscular fitness performance in

children with cerebral palsy: a comparison with healthy youth.

J Exerc Rehabil. 2016;12(2):124-31. doi: 10.12965/jer.1632552.276

Santos LJ, Aguiar Lemos F, Bianchi T, Sachetti A, Dall’Acqua

AM, Naue WS, et al. Early rehabilitation using a passive

cycleergometer on muscle morphology in mechanically

ventilated critically ill patients in the Intensive Care Unit (MoVeICU study): study protocol for a randomized controlled trial.

Trials. 2015;16:383. doi: 10.1186/s13063-015-0914-8

Williams H, Pountney T. Effects of a static bicycleing programme

on the functional ability of young people with cerebral palsy

who are non-ambulant. Dev Med Child Neurol. 2007;49(7):522-

doi: 10.1111/j.1469-8749.2007.00522.x

Sandberg K, Kleist M, Falk L, Enthoven P. Effects of twice-weekly

intense aerobic exercise in early subacute stroke: a randomized

controlled trial. Arch Phys Med Rehabil.2016;97(8):1244-53.

doi: 10.1016/j.apmr.2016.01.030

Harvey AR. The Gross Motor FunctionMeasure (GMFM). J

Physiother. 2017;63(3):187-91. doi: 10.1016/j.jphys.2017.05.007

Alotaibi M, Long T, Kennedy E, Bavishi S. The efficacy of GMFM88 and GMFM-66 to detect changes in gross motor function

in children with cerebral palsy (CP): a literature review. Disabil

Rehabil. 2014;36(8):617-27. doi: 10.3109/09638288.2013.805820

Almeida KM, Albuquerque KA, Ferreira ML, Aguiar SKB, Mancini

MC. Reliability of the Brazilian Portuguese version of the Gross

Motor Function Measure in children with cerebral palsy. Braz

J Phys Ther. 2016;20(1):73-80. doi: 10.1590/bjpt-rbf.2014.0131

Palisano RJ, Rosenbaum P, Barlett D, Livingston MH.

Content validity of the expanded and revised Gross Motor

Function Classification System. Dev Med Child Neurol.

;50(10):744-50. doi: 10.1111/j.1469-8749.2008.03089.x

Carvalho APV, Silva V, Grande AJ. Avaliação do risco de viés de

ensaios clínicos randomizados pela ferramenta da colaboração

Cochrane. Diagn Tratamento. 2013;18(1):38-44.

Chen CL, Chen CY, Liaw MY, Chung CY, Wang CJ, Hong

WH. Efficacy of home-based virtual cycling training on

bone mineral density in ambulatory children with cerebral

palsy. Osteoporos Int. 2013;24(4):1399-406. doi: 10.1007/

s00198-012-2137-0.

Bryant E, Pountney T, Williams H, Edelman N. Can a sixweek exercise intervention improve gross motor function

for non-ambulant children with cerebral palsy? A pilot

randomized controlled trial. Clin Rehabil. 2013;27(2):150-9.

doi: 10.1177/0269215512453061

Fowler EG, Knutson LM, Demuth SK, Siebert KL, Simms VD, Sugi

MH, et al. Pediatric endurance and limb strengthening (PEDALS)

for children with cerebral palsy using stationary cycling: a

randomized controlled trial. Phys Ther. 2010;90(3):367-81. doi:

2522/ptj.20080364

Wang HY, Yang YH. Evaluating the responsiveness of 2 versions

of the gross motor function measure for children with cerebral

palsy. Arch Phys Med Rehabil. 2006;87(1):51-6. doi: 10.1016/j.

apmr.2005.08.117

Bartlett DJ, Palisano RJ. A multivariate model of determinants

of motor change for children with cerebral palsy. Phys Ther.

;80(6):598-614. doi: 10.1093/ptj/80.6.598

Chen CL, Lin KC, Wu CY, Ke JY, Wang CJ, Chen CY. Relationships

of muscle strength and bone mineral density in ambulatory

children with cerebral palsy. Osteoporos Int. 2012;23(2):715-21.

doi:10.1007/s00198-011-1581-6

Russell DJ, Avery LM, Rosenbaum PL, Raina PS, Walter SD, Palisano

RJ. Improved scaling of the Gross Motor Function Measure for

children with cerebral palsy: evidence of reliability and validity.

Phys Ther. 2000;80(9):873-85. doi: 10.1093/ptj/80.9.873

Dodd KJ, Taylor NF, Graham HK. A randomized clinical trial of

strength training in young people with cerebral palsy. Dev Med

Child Neurol.2003;45(10):652-7. doi: 10.1017/S0012162203001221

Taylor NF, Dodd KJ, Baker RJ, Willoughby K, Thomason P,

Graham HK. Progressive resistance training and mobility related

function in young people with cerebral palsy: a randomized

controlled trial. Dev Med Child Neurol. 2013;55(9):806-12. doi:

1111/dmcn.12190

Ryan JM, Cassidy EE, Noorduyn SG, O’Connell NE. Exercise

interventions for cerebral palsy. Cochrane Database Syst Rev.

;6:CD011660. doi: 10.1002/14651858.CD011660.pub2

Verschuren O, Ada L, Maltais DB, Gorter JW, Scianni A, Ketelaar

M. Muscle strengthening in children and adolescents with

spastic cerebral palsy: considerations and future resistance

training protocols. Phys Ther. 2011;91(7):1130-9. doi: 10.2522/

ptj.20100356

Published

2019-02-02

Issue

Section

Systematic Review

How to Cite

Cycle ergometer in the improvement of gross motor function of children with cerebral palsy: a systematic review with meta-analysis. (2019). Fisioterapia E Pesquisa, 26(1), 101-109. https://doi.org/10.1590/1809-2950/18011026012019