Cartography of the Invisible: Revealing Small-scale Agriculture by RapidEye Imagery in the Region of Lower Tocantins, PA.

Authors

DOI:

https://doi.org/10.11606/rdg.v38i1.151603

Keywords:

Land Use and Land Cover, Landscape

Abstract

Remote sensing-derived data combined with the use of digital classification techniques provides a synoptic view and information about the temporal dimension of the studied phenomena on the territory, making possible to generate information about the landscape dynamic and spatial pattern in regions of large territorial extensions such as Amazon. In the mapping of large areas, such as those performed by INPE for the Legal Amazon with satellite images, land use and land cover classes are in general defined as a function of the spatial and radiometric resolution of the sensors used, so that small areas with diversified uses are generally aggregated into single and mixed class. This is the example of the so-called Mosaic of Uses class of the Land Use and Land Cover Monitoring System of the Amazon-TerraClass. This class represents in part, household agriculture, however, as this mapping is carried out based on TM or OLI images from Landsat series satellites, due to its spatial resolution of 30m and the minimum mapping area of 6.25 hectares (ha) defined by TerraClass, the identification of small production scale is compromised, since they are aggregated with other land use and land cover areas no longer distinguishable. For studies that seek to give visibility to small-scale economy spatial patterns, it is necessary to refine these classes with resolution data of better definition. In this context, the main objective of this work is to test three semi-automatic classification algorithms based on pixel and regions were tested, such as MAXVER, Bhattacharya and k-nearest neighbor (KNN) to evaluate theirs refinement capacity of the Mosaic of Uses class of the data produced by TerraClass-2014. The study area comprises part of the municipalities of Cametá, Mocajuba, and Baião, located in the northeastern region of Pará, where the production of cassava, black pepper, cacao, and açaí are economically important for the local population. For the mapping of the categories contained in the Occupancy Mosaic class, images of RapidEye, REIS sensors, orthoimage with 5m spatial resolution were used. The accuracy of the tested algorithms were estimated in 26%, 38% and 78% for MAXVER, Bhattacharya and k-nearest neighbor algorithms, respectively. In addition to the greater Global accuracy (78%), the k-nearest neighbor algorithm presented better results in relation to secondary vegetation, hydrography, and dirty pasture classes, with more than 90% of accuracy. The small-scale agriculture class presented 62% of accuracy, while the other two algorithms tested did not exceed 8%. The methodological approach developed demonstrated the feasibility of using spatial high-resolution images and semi-automatic methods to distinguish land use and land cover classes present into TerraClass's Mosaic of Uses class. The methodology can be used to complement the existing databases for the Amazon (TerraClass, MapBiomas, and IBGE), emphasizing small-scale agricultural categories, giving visibility to their production systems, frequently neglected in large extent mappings.

Downloads

Download data is not yet available.

References

ALMEIDA, C. A. de; COUTINHO, A. C. ; ESQUERDO, J. C. D. M. ; DINIZ, C. G. ; ADAMI, M.; VENTURIERI, A.; DURIEUX, LDESSAY, .; N; GOMES, A. R. “High spatial resolution land use and land cover mapping of the Brazilian Legal Amazon in 2008 using Landsat-5 / TM and MODIS data,” Acta Amaz., vol. 46, no. 3, pp. 291–302, 2016.
ANTUNES, M. A. H.; DEBIASI, P.; SIQUEIRA, J. C. D. S. Avaliação espectral e geométrica das imagens Rapideye e seu potencial para o mapeamento e monitoramento agrícola e ambiental. Revista Brasileira de Cartografia, v.66/1, p.105–113, 2014. Disponível em: <http://www.rbc.lsie.unb.br/index.php/rbc/article/view/789>. Acesso em: 13 mai.2015.
BAATZ, M.; SCHÄPE, A. Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation. In: Angewandte geographische Informations verarbeitung. 2000.
BASTOS, A. P. V., ORIANA ALMEIDA, CASTRO, E. R. de, MARIN, R. A., PIMENTEL, M. D S., RIVERO, S., … BRUZEKE, F. J. (2010). Economia e Sociedade na Região do Tocantins, Pará. NAEA.
BENITEZ, F. L.; ANDERSON, L. O. ; FORMAGGIO, A. R. Evaluation of
geostatistical techniques to estimate the spatial distribution of aboveground
biomass in the Amazon rainforest using high-resolution remote sensing data.
Acta Amazonica, 46(2), 151 –160, 2016.
CÂMARA, G.; SOUZA, R. C. M; FREITAS, U.M.; GARRIDO, J. "SPRING: Integrating remote sensingand GIS by object-oriented data modelling". Computers & Graphics, 20: (3) 395-403, 1996.
CHALERMWAT, P. High performance automatic image registration for remote sensing. 1999. Tese (Doutorado) - George Mason University, Fairfax.
COHEN, J. A. Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement, v.20, n.1, p. 37-46, 1960.
CASTEJON, E. TerraPixel: an extensible image processing application prototype built using TerraLib classes and functions. Versão 1.0.4. [S. l.], 18 jan. 2019. Disponível em: http://http://www.dpi.inpe.br/~castejon/wiki/doku.php?id=wiki:terrapixel.
COSTA, F. A. As múltiplas faces da Amazônia. FAPESP, Bélém, 2019.
COUTINHO, A.C; ALMEIDA, C. A.; VENTURIERI, A.; ESQUERDO, J. C.D. M.; SILVA, M. Uso e cobertura da terra nas áreas desflorestada da Amazônia Legal: TerraClass 2008. Brasília, DF: EMBRAPA; Belém: INPE,2013.
DAL'ASTA, A. P. Representações do fenômeno urbano na Amazônia contemporânea: observações no sudoeste Paraense. 2017. 207 p. IBI: <8JMKD3MGP3W34P/3MAQBFE>. (sid.inpe.br/mtc-m21b/2016/08.23.18.20-TDI). Tese (Doutorado em Sensoriamento Remoto) - Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 2016. Disponível em: <http://urlib.net/8JMKD3MGP3W34P/3MAQBFE>.
DURO, D.U.; FRANKLIN, S. E.; DUBÉ, M. G. “A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery,” Remote Sens. Environ., vol. 118, pp. 259–272, 2012.
ESCADA, M. I. S. Evolução de padrões de uso e cobertura da terra na
região Centro-Norte de Rondônia. 2003. 264 p. (INPE-10209-TDI/899). Tese (Doutorado em Sensoriamento Remoto) - Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 2003. Disponível em: <http://urlib.net/6qtX3pFwXQZ3P8SECKy/yBuGo>. Acesso em: 15 ago. 2016.
FLORENZANO, T.G. Iniciação em sensoriamento remoto. São Paulo: Oficina de Texto, 2011.
GAMANYA, R.; DE MAEYER, P.; DE DAPPER, M. An automated satellite image classification design using object-oriented segmentation algorithms: A move towards standardization. Expert Systems with Applications, v. 32, n. 2, p. 616–624, 2007. ISSN 09574174.
GAVLAK, A. A. Padrões de mudança de cobertura da terra e dinâmica
populacional no Distrito Florestal Sustentável da BR-163: população, espaço e ambiente. 2011. 177 p. (sid.inpe.br/mtc-m19/2011/08.02.16.24-TDI). Dissertação (Mestrado em Sensoriamento Remoto) - Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 2011. Disponível em: <http://urlib.net/8JMKD3MGP7W/3A7C3ML>. Acesso em: 15 ago. 2016.
GILBERTSON, J. K.; KEMP, J.; VAN NIEKERK, A.Effect of pan-sharpening multi-temporal Landsat 8 imagery for crop type differentiation using different classification techniques Computers and Electronics in Agriculture., vol. 134, pp. 151–159, 2017.
GONZALEZ, R.C.; WOODS, R. E. Processamento de Imagens Digitais. Editora Edgard Blücher Ltda, 2000.
HUDSON, W. D.; RAMM, C. W. Correct formulation of the kappa coefficient of agreement. Photogrammetric Engineering & Remote Sensing, Maryland, v.53, n.4, p.421-2, 1987.
INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA-IBGE. Monitoramento da cobertura e uso da terra do Brasil 2000-2010-2012-2014. Rio de Janeiro, 2017. Disponível em: https://biblioteca.ibge.gov.br/visualizacao/ livros/liv101469.pdf. Acesso em: 22 de março de 2018.
IBGE, Produção Agrícola Municipal 2014. Rio de Janeiro: IBGE, 2015.
IBGE, Produção da Pecuária Municipal 2014; Rio de Janeiro: IBGE, 2015.
JENSEN, J. R. Sensoriamento Remoto do Ambiente: Uma perspectiva em recursos terrestres. São José dos Campos: Parêntese, 2011.
KUX, H. J. H. ; PINHO, C. M. D. . Object-oriented analysis of high-resolution satellite images for intra-urban land cover classification: case study in São José dos Campos, São Paulo state, Brazil. In: I International Conference on Object-based Image Analysis (OBIA2006), 2006, Salzburg, Austria. 1st International Conference on Object-based Image Analysis. Salzburg: Salzburg University, 2006. v. XXXVI.
LIMA, R. R.; TOURINHO, M. M. ; COS TA, J. P . C. da. Várzeas flúvio­marinhas da Amazônia Brasileira: Características e possibilidades agropecuárias. Belém: FCAP. Serviço de documentação e informação, 2001. 3 24p.
MATHER, P. M. Computer Processing of remotely sensed images: An Introduction. 3ª edição, New York, John Wiley & Sons. 1993. 352 p.
MELLO, D. G., COSTA, F. DE A.; JÚNIOR, S. B. Mercado e potencialidades dos produtos oriundos de floresta secundária em áreas de produção familiar. Novos Cadernos NAEA, 12, 137–148,2009.
MENESES, P. R.; ALMEIDA, T. De. Introdução Ao Processamento de Imagens de Sensoriamento Remoto 266, 2012.
MOLLAEI, Y. T.; KARAMSHAHI, A. A. Vegetation mapping through using satellite images of WorldView 2-A case study of Haft Barm, Shiraz. Journal of Wildlife and Biodiversity, v. 3, n. 1, p. 9–21, 2019.
MORARIU, O.; BURESCU, F. Agricultural land cover classification using Rapideye satellite imagery. Journal of Young Scientist, v. VI, 2018.
PLANET BLACKBRIDGE, Applications of the RapidEye Red Edge Band,2016.
PONZONI, F.J; SHIMABUKURO, Y. E; KUPLICH ,T.M. Sensoriamento Remoto da Vegetação. São José dos campos: Oficina de textos, 2012, 2ºed.
PROJETO MAPBIOMAS – Coleção 2.3 da Série Anual de Mapas de Cobertura e Uso de Solo do Brasil. Disponível em: http://mapbiomas.org/map#coverage. Acesso em: 22 de março de 2018.
RICHARDS, J. A; JIA, X. Remote sensing digital image analysis: an introduction. 3th ed. Berlin; New York: Springer-Verlag, 2005. XXIV, 4-25p.
SCHUSTER, C.; FÖRSTER, M.; KLEINSCHMIT, B. Testing the red edge channel for improving land-use classifications based ;on high-resolution multi-spectral satellite data. International Journal of Remote Sensing, p. 5583-5599, 2012.
RAMOELO, A.; SKIDMOREB, A. K; CHOA, M. A; SCHLERFC, M.; MATHIEUA, R.; HEITKÖNIG, I.M.A. Regional estimation of savanna grass nitrogen using the red-edge band of the spaceborne rapideye sensor. International Journal of Applied Earth Observation and Geoinformation, v. 19, n. 1, p. 151–162, 2012.
SHANNON, C. E. Communication in the Presence of Noise. Proceedings of the IEEE, v.86, n. 2. 1998. 4447 a 457 pp.
SILVA, M. P. D. S.; CÂMARA, G.; ESCADA, M. I. S.; SOUZA, R. C. M. Remote sensing image mining: detecting agents of land-use change in tropical forest areas. International Journal of Remote Sensing, v. 29, p.4803–4822, 2008.
SOUZA, A. R. Economia e natureza: Padrões de uso e cobertura da terra associados a atividades agropecuárias e extrativistas de comunidades do sudoeste do Pará. 2017. 224 p. Dissertação (Mestrado em Sensoriamento Remoto) - Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 2016. Disponível em: <http://urlib.net/8JMKD3MGP3W34P/3M8SD78>.
SOUZA, A. R. DE; ESCADA, M. I. S. ;MONTEIRO, A. M. V. Padrão da paisagem associado ao uso e cobertura da terra em comunidades ribeirinhas e de terra firme situadas no sudoeste do Pará. GEOGRAFIA. v.42, n. 2 mai/ago, 2017.
SCHUSTER, C.; FÖRSTER, M.; KLEINSCHMIT, B. Testing the red edge channel for improving land-use classifications based on high-resolution multi-spectral satellite data. International Journal of Remote Sensing, 33, 5583–5599, 2012.
STEHMAN, S. V. Estimating the kappa coefficient and its variance under stratified random sampling. Photogrammetric Engineering e Remote Sensing, 62(4):401–407, 1996.
USTUNER, M. SANLI, F. B. AND DIXON, B. Application of Support Vector Machines for Land use Classification Using High-Resolution RapidEye Images: A Sensitivity Analysis. European Journal of Remote Sensing, 48, p.403-422, 2015.
VALERIANO, D. M.; ESCADA, M. I. S; CÂMARA, G.; AMARAL, S.; MAURANO, L.; RENNÂ, C. D.; ALMEIDA, C. A; MONTEIRO, A. M. V. Monitoramento do desmatamento. In: MARTINE, G. (ed.). População e sustentabilidade na era das mudanças ambientais globais: contribuição para uma agenda brasileira. Belo Horizonte: ABEP, 2012. p. 223-238.
VOGELS, M. F. A.; DE JONG, S. M.; STERK, G.; ADDINK, E. A. Mapping irrigated agriculture in complex landscapes using SPOT6 imagery and object-based image analysis – A case study in the Central Rift Valley, Ethiopia. International Journal of Applied Earth Observation and Geoinformation. vol. 75, no. May 2018, pp. 118–129, 2019.
YAN, G., MAS, J. F.;MAATHUIS, B. H. P.; XIANGMIN, Z.;VAN DIJK, P. M. Comparison of pixel-based and object-oriented image classification approaches-A case study in a coal fire area, Wuda, Inner Mongolia, China. International Journal of Remote Sensing, 27, 4039–4055, 2006.

Published

2019-12-11

Issue

Section

Artigos

How to Cite

de Souza, A. R., Escada, M. I. S., Marujo, R. de F. B., & Monteiro, A. M. V. (2019). Cartography of the Invisible: Revealing Small-scale Agriculture by RapidEye Imagery in the Region of Lower Tocantins, PA. Revista Do Departamento De Geografia, 38, 137-153. https://doi.org/10.11606/rdg.v38i1.151603