Geospacial Model for Identification of Areas With Fire Propagation Danger in the Serra da Canastra National Park, Brazil

Authors

DOI:

https://doi.org/10.11606/rdg.v38i1.153493

Keywords:

Forest fires; Parks; Risk mapping; Kolmogorov-Smirnov test.

Abstract

Despite the fire being part of the dynamics and evolution of the Brazilian Savanna (Cerrado), indiscriminate forest fires are a problem for Conservation Units longevity. The Serra da Canastra National Park (SCNP) is located in southwest of Minas Gerais, Brazil, and it has the fire as one of the main conflicting activity. This work had as aim to create a methodology for the generation of a potential danger model for fire propagation, which was applied in the SCNP. For that, geo-environmental variables associated with fire propagation were mapped: hypsometry, slope, wind surface effect, surface convexity index, vegetation index, drainage density and roads density. The spatial dependence among the areas of high fire recurrence and these geo-environmental variables was evaluated by Kolmogorov-Smirnov test, with weights associated with the variables. The modeling was generated in Geographic Information System (GIS) and employed Fuzzy probabilistic maps. The results showed that the Chapadão da Canastra and the Chapadão da Babilônia present a high potential danger of fire propagation. The danger of propagation in the flat plain between mountain slopes is medium, and in the buffer zone is lower. The model was validated, proving the method efficiency.

Downloads

Download data is not yet available.

Author Biographies

  • Cassiano Gustavo Messias, Departamento de Geografia, Instituto de Geociências, Universidade Estadual de Campinas

    Departamento de Geografia

    Área: Sensoriamento Remoto, Análise Espacial e Cartografia

  • Marcos César Ferreira, Departamento de Geografia, Instituto de Geociências, Universidade Estadual de Campinas

    Departamento de Geografia

References

AJIN, R. S.; LOGHIN, A. M.; KARKI, A.; VINOD, P. G.; JACOB, M. K. Delineation of forest fire risk zones in Thenmala forest division, Kollam, Kerala, India: a study using geospatial tools. J. Wetlands Biodiversity, v. 6, p. 175-184, 2016.
ALLGÖWER, B.; CARLSON, J. D.; WAGTENDONK, J. W. Introduction to fire danger rating and remote sensing: will remote sensing enhance wildland fire danger rating? In.: CHUVIECO, E (ed.). Wild fire danger estimation and mapping: the role of remote sensing data. Danvers, EUA: World Scientific Publishing Co. Pte. Ltd., 2003. p. 1 – 19
BÖHER, J.; ANTONIC, O. Land Surface Parameters Specific to Topo-Climatology. HENGL, T.; REUTER, H. I. In.: Geomorphometry: Concepts, software, applications. Oxford: Elsevier, 2009.
CARVALHO, E. V.; BATISTA, A. C.; COELHO, M. C. B.; NEVES, C. O. M.; SANTOS, G. R.; GIONGO, M. Caracterização de áreas queimadas no estado do Tocantins no ano de 2014. Floresta, v. 47, n. 3, p. 269-278, 2017.
COURA, P. H. F.; SOUZA, G. M.; FERNANDES, M. C. Mapeamento Geoecológico da Susceptibilidade à Ocorrência de Incêndios no Maciço da Pedra Branca, Município do Rio de Janeiro. Anuário do Instituto de Geociências – UFRJ, v. 32, n. 2, p. 14-25, 2009.
CHUVIECO, E.; AGUADO, L.; YEBRA, M.; NIETO, H.; SALAS, J.; MARTÍN, M. P.; VILAR, L.; MARTINÉZ, J.; MARTÍN, S.; IBARRA, P.; RIVA, J. de la; BAEZA, J.; RODRÍGUEZ, F.; MOLINA, J. R.; HERRERA, M. A.; ZAMORA, R. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecological Modelling, v. 221, p. 46-58, 2010.
CONTI, J. B.; FURLAN, S. A. Geoecologia: o clima, os solos e a biota. In.: ROSS, J. L. S. (org.) Geografia do Brasil. 6ª ed. São Paulo: Edusp, 2011.
COSTA-MILANEZ, C. B.; RIBEIRO, F;. F.; CASTRO, P. T. A.; MAJER, J. D.; RIBEIRO, S. P. Effect of Fire on Ant Assemblages in Brazilian Cerrado in Areas containing Vereda Wetlands. Sociobiology, v. 62, n. 4, p. 494-505, 2015.
CUI, W.; PERERA, A. H. What do we know about forest fire size distribution, and why is this knowledge useful for forest management? International Journal of Wildland Fire, v. 17, p, 234-244, 2008.
DURIGAN, G.; RATTER, J. A. The need for a consistent fire policy for Cerrado conservation. Journal of Applied Ecology, v. 53, p. 11-15, 2016.
ESKANDARI, S.; CHUVIECO, E. Fire danger assessment in Iran based on geospatial information. International Journal of Applied Earth Observation and Geoinformation, v. 42, p. 57–64, 2015.
FERREIRA, M. C. Iniciação à análise geoespacial: teoria, técnicas e exemplos para geoprocessamento. Rio Claro: Ed. Unesp, 2014.
FRANKE, J.; BARRADAS, A. C. S.; BORGES, M. A.; COSTA, M; M.; DIAS, P. A.; HOFFMANN, A. A.; OROZCO FILHO, J. C.; MELCHIORI, A. E.; SIEGERT, F. Fuel load mapping in the Brazilian Cerrado in support of integrated fire management. Remote Sensing of Environment, v. 217, p. 221-232, 2018.
GAGNON, P. R.; PASSMORE, H. A; SLOCUM, M.; MYERS, J. A.; HASRMS, K. E.; PLATT, W. J.; PAINE, C. E. T. Fuels and fires influence vegetation via above- and belowground pathways in a high-diversity plant community. Journal of Ecology, v. 103, p. 1009-1019, 2015.
GOMES, L.; MIRANDA, H. S.; BUSTAMANTE, M. M. C. How can we advance the knowledge on the behavior and effects of fire in the Cerrado biome? Forest Ecology and Management, v. 417, p. 281-290, 2018.
IWAHASHI, J.; RICHARD, P. Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology, v. 86, p. 409-440, 2007.
MAGALHÃES, S. R.; LIMA, G. S.; RIBEIRO, G. A. Avaliação dos incêndios florestais ocorridos no Parque Nacional da Serra da Canastra – Minas Gerais. Cerne, v. 18, n. 1, p. 135-141, 2012.
MESSIAS, C. G.; FERREIRA, M. C. Mapeamento têmporo-espacial das queimadas no Parque Nacional da Serra da Canastra (MG) e suas relações com as zonas de planejamento. In: PEREZ FILHO, A.; AMORIM, R. R. Os desafios da Geografia Física na fronteira do conhecimento. Campinas: UNICAMP, 2017.
MMA; IBAMA. Plano de Manejo: Parque Nacional da Serra da Canastra. Brasília: MMA, 2005.
MMA; ICMBIO; PNSC. Processo 02070.000978/2018-19 / SEI 2668224. O parque Nacional da Serra da Canastra: breves considerações históricas, logísticas e gerenciais. São Roque de Minas: SEI, 2018.
POLDONI, L.; GANIS, P.; VIDALI, M.; ALTOBELLI, A.; BALDER, F.; CANTELE, S. Inclusion of phytosociological data in an index of vegetation fire danger: application and mapping on the Karst area around Trieste (Italy). Official Journal of the Societa Botanica Italiana, v. 152, n. 4; p. 810-817, 2017.
RISSI, M. N.; BAEZA, M. J.; GORGONE,-BARBOSA, E.; ZUPO, T.; FIDELIS, A. Does season affect fire behaviour in the Cerrado? International Journal of Wildland Fire, v. 26, 427-433, 2017.
STEVENS, J. T.; BECKAGE, B. Fire feedbacks facilitate invasion of pine savannas by Brazilian pepper (Schinus terebinthifolius). New Phytologist, v. 184, p. 365–375, 2009.
TAYLOR, P. J. Inferential statistic. In: TAYLOR, P. J. Quantitative methods in geography. Boston, Houghton Mifflin Co., p. 102-123, 1977.
TORRES, F. T. P. Relação entre fatores climáticos e ocorrência de incêndios florestais na cidade de Juiz de Fora (MG). Caminhos de Geografia, v. 7, n. 18, p. 162-171, 2006.

Published

2019-12-10

Issue

Section

Artigos

How to Cite

Messias, C. G., & Ferreira, M. C. (2019). Geospacial Model for Identification of Areas With Fire Propagation Danger in the Serra da Canastra National Park, Brazil. Revista Do Departamento De Geografia, 38, 154-168. https://doi.org/10.11606/rdg.v38i1.153493