Response of Mount Melimoyu glaciers, Chile, to dryer and warming climatic trends for Northern Patagonian region in last decades

Authors

DOI:

https://doi.org/10.11606/rdg.v39i0.160197

Keywords:

Glacier fluctuations, Northern Chilean Patagonia, Multitemporal analysis, Climate changes

Abstract

In this paper were investigated area variations in glaciers on Mount Melimoyu (44ºS, 72ºW) in the period of 1970-2017, and possible relationships with the climate variability between 1950 and 2017. Optical data from Sentinel-2A, and elevation from Digital Elevation Model (DEM) ASTER-GDEM v.2 and area data from GLIMS inventory were used in GIS analyse. The temporal series of annual precipitation data by Explorador Climático - Chile, and temperature data of reanalysis from the University of Delaware were utilised for climate analysis. The glaciers area reduced from 80.97 km2 in 1970 to 52.14 km2 in 2017, equivalent to a 35.6% reduction in area, especially as for the glaciers located in the West, Southwest, North, and Northeast sectors, with losses between 65% and 44% of total area, and front-line elevation variations between 74 m and 570 m. The mean precipitation was 2539 mm in the period 1950‑2017 and is evidenced a tendency to decrease precipitation of approximately -18 mm per year. The temperature data show an annual average of 9.87°C and a continuous trend of increase in the region of 0.04°C between 1948 and 2017. The contrasts between glaciers in loss of area and variation of front line elevation are related to differences in area and geomorphometry of each glacier. These glaciers are similar in size, elevation and slope of the front sector, and the variations identified can be related to warm, and dryer trends for the region in the analysed period.

Downloads

Download data is not yet available.

Author Biographies

  • Kátia Kellem da Rosa, Universidade Federal do Rio Grande do Sul

    Doutora em Geociências, Professora no Departamento de Geografia e do quadro permanente no Programa de Pós-graduação em Geografia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9.500, CEP 91.501-970, Porto Alegre, RS, Brasil (katia.rosa@ufrgs.br), Porto Alegre/RS, Brazil.

  • Jefferson Cardia Simões, Universidade Federal do Rio Grande do Sul

    PhD na Scott Polar Research Institute, Professor permanente no Programa de Pós-graduação em Geografia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9.500, CEP 91.501-970, Porto Alegre, RS, Brasil (jefferson.simoes@ufrgs.br), Porto Alegre/RS, Brazil.

References

ANIYA, M. Glacier variations of Hielo Patagónico Norte, Chile, for 1944/45-2004/05. Bulletin Glaciological Research, v. 24. p. 59–70, 2007. Disponível em: <http://web.seppyo.org/bgr/pdf/24/BGR24p59.pdf>.

ANIYA, M.; ENOMOTO, H. Glacier Variations and Their Causes in the Northern Patagonia Icefield, Chile, since 1944. Arctic and Alpine Research, v. 18, n. 3 p. 307-316, 1986. Doi: http://www.doi.org/10.2307/1550888.

ARENDT, A. et al. Rapid Wastage of Alaska Glaciers and their Contribution to Rising Sea Level. Science, v. 297. p. 382-386, 2002. Doi: http://www.doi.org/10.1126/science.1072497.

BERTRAND, S. et al. Precipitation as the main driver of Neoglacial fluctuations of Gualas glacier, Northern Patagonian Icefield. Climate of the Past. v. 8, p. 519–534, 2012. Doi: http://www.doi.org/10.5194/cp-8-519-2012.

BISHOP, M. et al. Global land-ice Measurements from Space (GLIMS): Remote Sensing and GIS Investigations of the Earth’s Cryosphere. Geocarto International. v. 19, n.2. p. 57-84, 2004. Doi: http://www.doi.org/10.1080/10106040408542307.

CASASSA, G. et al. A century-long recession record of Glacier O’Higgins, Chilean Patagonia. Annals of Glaciology. 24. p. 106 – 110, 1997. Doi: http://www.doi.org/10.1017/s0260305500012015.

CASASSA, G. et al. Current Status of Andean Glaciers. Science Direct, Global and Planetary Change, v. 59, p. 1-9, 2007. Doi: http://www.doi.org/10.1016/j.gloplacha.2006.11.013.

COUDRAIN, A.; FRANCOU, B.; KUNDZEWICZ, Z. Glacier shrinkage in the Andes and consequences for water resources - Editorial. Hydrological Sciences Journal. 50(6). p. 925–932, 2005. Doi: http://www.doi.org/10.1623/hysj.2005.50.6.925.

DYURGEROV, M.; MEIER, M. Twentieth Century Climate Change: Evidence from Small Glaciers. Proceedings of the National Academy of Science, v.97, n.4, p. 1406-1411, 2000. Doi: http://www.doi.org/10.1073/pnas.97.4.1406.

DGA. Dirección General de Aguas, Ministerio de Obras Públicas. Gobierno de Chile. Informaciones de los dados pluviométricos. Disponível em: http://www.dga.cl/acercadeladga/Paginas/default.aspx.

ESA. U.S. Geological Survey. Sentinel-2A. 17 de março de 2017. 43°49'51.39"S, 73°04'24.36"W. Informações disponíveis em: <https://earthexplorer.usgs.gov/metadata/10880/1207546/>.

FERRANDO, F. Sobre la distribución de Glaciares Rocosos en Chile, análisis de la situación y reconocimiento de nuevas localizaciones. Investigaciones Geográficas, v. 54, p. 127-144, 2017. Doi: http://www.doi.org/10.5354/0719-5370.2017.48045.

GARREAUD, R. et al. Large-Scale Control on the Patagonian Climate. Journal of Climate, v.26, p. 215-230, 2013. Doi: http://www.doi.org/10.1175/JCLI-D-12-00001.1.

GONZÁLEZ, F, B. Cambios climáticos en la Región de Los Lagos y respuestas recientes del Glaciar Casa Pangue (41º08’S). Facultad de Arquitectura y Urbanismo, Escuela de Postgrado, Departamento de Geografia. Universidad de Chile, 131, 2004. Doi: http://www.doi.org/10.4067/S0034-98872004000500007.

HAEBERLI, W.; BARRY, R.; CIHLAR, J. Glacier Monitoring Within the Global Climate Observing System. Annals of Glaciology, v. 31, p.241-246, 2000. Doi: http://www.doi.org/10.3189/172756400781820192.

HARRISON, S.; WINCHESTER, V. Historical fluctuations of the Gualas and Reicher Glaciers, North Patagonian Icefield, Chile. The Holocene, v. 8, n. 4, p. 481-485, 1998. Doi: http://www.doi.org/10.1191/095968398672334459.

HOWAT, I, M.; JOUGHIN, I.; SCAMBOS, T. A. Rapid changes in ice discharge from Greenland outlet glaciers. Science, v. 315, p. 1559-1561, 2007. Doi: http://www.doi.org/10.1126/science.1138478.

HUGGEL, C. et al. Remote Sensing Based Assessment of Hazards from Glacier Lake Outbursts: A Case Study in the Swiss Alps. Canadian Geotechnical Journal, v. 39, n. 2, p. 316-330, 2002. Doi: http://www.doi.org/10.1139/t01-099.

IDALINO, F, D. et al. Recent glacier variations on Mount Melimoyu (44°50'S-72°51'W), Chilean Patagonia, using Sentinel-2 data. Geocarto International, p. 1-16. 2019. Doi: http://www.doi.org/10.1080/10106049.2018.1557262.

IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [STOCKER, T.F., D. QIN, G.-K. PLATTNER, M. TIGNOR, S.K. ALLEN, J. BOSCHUNG, A. NAUELS, Y. XIA, V. BEX AND P.M. MIDGLEY (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. Disponível em: <https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_all_final.pdf>.

KARGEL, J. et al. Multispectral Imaging Contributions to Global Land Ice Measurements from Space. Remote Sensing of the Environment, v. 99, p. 187-219, 2005. Doi: http://www.doi.org/10.1016/j.rse.2005.07.004.

KASER, G. Glacier–Climate Interaction at Low Latitudes. Journal of Glaciology. 47. 195–204, 2001. Doi: http://www.doi.org/10.3189/172756501781832296.

KUHN, M. et al. Measurements and models of the mass balance of hintereisferner. Geografiska Annaler. 81(4). 659–670, 1999. Doi: http://www.doi.org/10.1111/j.0435-3676.1999.00094.x.

MALMROS, J, K.; MERNILD, S, H.; WILSON, R. Glacier area changes in the central Chilean and Argentinean Andes 1955-2013/14. Journal of Glaciology, v. 62, p. 391-401, 2016. DOI: http://www.doi.org/10.1017/jog.2016.43.

MASIOKAS, M. et al. 20th-century glacier recession and regional hydroclimatic changes in northwestern Patagonia. Global and Planetary Change, v. 60, p. 85-100, 2008. Doi: http://www.doi.org/10.1016/j.gloplacha.2006.07.031.

MEIER, M. Contribution of Small Glaciers to Global Sea Level. Science. 226. 1418–1421, 1984. Doi: http://www.doi.org/10.1126/science.226.4681.1418.

MERNILD, S, H. et al. Mass loss and imbalance of glaciers along the Andes Cordillera to the Sub-Antarctic islands. Global and Planetary Change. 133. 109–119, 2015. Doi: http://www.doi.org/10.1016/j.gloplacha.2015.08.009.

MÖLLER, M.; SCHNEIDER, C.; KILIAN, R. Glacier change and climate forcing in recent decades at Gran Campo Nevado, southernmost Patagonia. Annal of Glaciology, 46. 136–144, 2007. DOI: http://www.doi.org/10.3189/172756407782871530.

NASA/METI. U.S. Geological Survey. Advanced Spaceborn Thermal Emission Radiometric. Global Digital Elevation Model, version 2. 17 de outubro de 2011. 44°30'S, 72°30'W. Informações disponíveis em: <https://earthexplorer.usgs.gov/metadata/4220/ASTGDEMV2_0S45W073/>.

PATERSON, W, S, B. The Physics of Glaciers. Butterworth-Heinemann, third edition. 1999.

OERLEMANS, J. Extracting a Climate Signal from 169 Glacier Records. Science, v. 308, n. 5722, p. 675–677, 2005. Doi: http://www.doi.org/10.1126/science.1107046.

PELLICCIOTTI, F. et al. Changes of Glaciers in the Andes of Chile and Priorities for Future Work. Science of the Total Environment, v. 493, p. 1197-1210, 2014. Doi: http://www.doi.org/10.1016/j.scitotenv.2013.10.055.

RABATEL, A. et al. Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. The Cryosphere. 7. 81–102, 2013. Doi: http://www.doi.org/10.5194/tc-7-81-2013.

RIGNOT, E; RIVERA, A; CASASSA, G. Contribution of the Patagonia Icefields of South America to Sea Level Rise. Science, v. 302, p. 434–437, 2003. Doi: http://www.doi.org/10.1126/science.1087393.

ROCHA, S, A.; VIDELA, GIERING, Y. Caracterización Glaciológica de Chile. Investigaciones Geográficas, v. 53, p. 3-24, 2017. Doi: http://www.doi.org/10.5354/0719-5370.2017.41739.

SANCHES, A. M. Variações na extensão da cobertura de gelo do Nevado Cololo, Bolívia. Dissertação. (Mestrado em Geociências). Universidade Federal do Rio Grande do Sul. 93p. 2013. Disponível em: <https://lume.ufrgs.br/handle/10183/72104>.

SCHAEFER, M. et al. Modeling past and future surface mass balance of the Northern Patagonia Icefield. Journal of Geophysical Research. 118. p. 571–88. 2013. Doi: http://www.doi.org/10.1002/jgrf.20038.

VANDEKERKHOVE, E. The volcanic ash soils of Northern Chilean Patagonia (44°–48°S): Distribution, weathering and influence on river chemistry. Universiteit Gent, Faculteit Wetenschappen: Gent. 99p. 2014. Disponível em: <https://lib.ugent.be/fulltxt/RUG01/002/163/638/RUG01-002163638_2014_0001_AC.pdf>.

Published

2020-07-06

Issue

Section

Artigos

How to Cite

Idalino, F. D., Rosa, K. K. da, & Simões, J. C. (2020). Response of Mount Melimoyu glaciers, Chile, to dryer and warming climatic trends for Northern Patagonian region in last decades. Revista Do Departamento De Geografia, 39, 126-137. https://doi.org/10.11606/rdg.v39i0.160197