South Atlantic Convergence Zone variability in relation to ENSO events from 2000 to 2021

Authors

DOI:

https://doi.org/10.11606/eISSN.2236-2878.rdg.2022.193110

Keywords:

South Atlantic Convergence Zone, ONI, Climate Variability, ERA-5

Abstract

The South Atlantic Convergence Zone, SACZ, is established over the northwest-southeast strip of South America, in the austral summer, and contributes to a large part of the precipitation observed in the region, being influenced by teleconnection patterns and variations in the surface temperature of the Pacific Ocean. The aim of this study was to analyze the association between SACZ and the Oceanic Niño Index, ONI, between 2000 and 2021, based on data from ECMWF reanalysis five, ERA-5. SACZ identification was performed based on daily data on longwave radiation, precipitable water and atmospheric circulation. ONI data were correlated to the monthly occurrence of SACZ through linear and contingency correlation coefficients. The results point to the highest (lower) frequency of SACZ in the negative (positive) phase of ONI, indicating 42 SACZ events during La Niña events and 24 SACZ events during El Niño periods. Although the linear correlation coefficient between the number of ZCAS and ONI is low for the period considered (r = -0.20, p < 0.10), the contingency coefficient showed a moderate association, with a value equal to -0.46.

Downloads

Download data is not yet available.

References

AMBRIZZI, T.; FERRAZ, S. E. T. An objective criterion for determining the South Atlantic Convergence Zone. Frontiers in Environmental Science, v. 3, 23 abr. 2015. Disponível em: < http://dx.doi.org/10.3389/fenvs.2015.00023 >.

BARREIRO, M.; CHANG, P.; SARAVANAN, R. Variability of the South Atlantic Convergence Zone Simulated by an Atmospheric General Circulation Model. Journal of Climate, v. 15, n. 7, p. 745–763, abr. 2002. Disponível em: < http://dx.doi.org/10.1175/1520-0442(2002)015<0745:VOTSAC>2.0.CO;2 >.

BARRY, R. G.; CHORLEY, R. J. Atmosfera Tempo e Clima. 9. ed. Porto Alegre: Editora Bookman, 2013.

BOMBARDI, R. J. et al. Precipitation over eastern South America and the South Atlantic Sea surface temperature during neutral ENSO periods. Climate Dynamics, v. 42, n. 5–6, p. 1553–1568, 15 mar. 2014. Disponível em: < http://dx.doi.org/10.1007/s00382-013-1832-7 >.

CAI, W. et al. Climate impacts of the El Niño–Southern Oscillation on South America. Nature Reviews Earth & Environment, v. 1, p. 215–231, 2020. Disponível em: < https://doi.org/10.1038/s43017-020-0040-3 >.

CARVALHO, L. M. V.; JONES, C.; LIEBMANN, B. Extreme Precipitation Events in Southeastern South America and Large-Scale Convective Patterns in the South Atlantic Convergence Zone. Journal of Climate, v. 15, n. 17, p. 2377–2394, set. 2002. Disponível em: < https://doi.org/10.1175/1520-0442(2002)015<2377:EPEISS>2.0.CO;2 >.

CARVALHO, L. M. V.; JONES, C.; LIEBMANN, B. The South Atlantic Convergence Zone: Intensity, Form, Persistence, and Relationships with Intraseasonal to Interannual Activity and Extreme Rainfall. Journal of Climate, v. 17, n. 1, p. 88–108, 2004. Disponível em: < https://doi.org/10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2 >.

CERÓN, W. L. et al. Recent intensification of extreme precipitation events in the La Plata Basin in Southern South America (1981–2018). Atmospheric Research, v. 249, p. 105299, 1 fev. 2021. Disponível em: < https://doi.org/10.1016/j.atmosres.2020.105299 >.

CUNHA, G. R. Oscilação do Sul e perspectivas climáticas aplicadas no manejo de culturas no sul do Brasil. EMBRAPA, 1999.

EMANUEL, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature, v. 436, n. 7051, p. 686–688, 31 ago. 2005. Disponível em: < https://doi.org/10.1038/nature03906 >.

ESCOBAR, G. C. J. Zona de Convergência do Atlântico Sul (ZCAS): Critério de Detecção para Uso em Centros Operacionais de Previsão de Tempo. Instituto Nacional de Pesquisas Espaciais - INPE, p. 19, 2019.

KASZNAR, I. K.; GONÇALVES, B. M. L. REGRESSÃO MÚLTIPLA: uma digressão sobre seus usos. IBCI – Institutional Business Consultoria Internacional, 2007.

KODAMA, Y. Large-Scale Common Features of Subtropical Precipitation Zones (the Baiu Frontal Zone, the SPCZ, and the SACZ) Part I: Characteristics of Subtropical Frontal Zones. Journal of the Meteorological Society of Japan. Ser. II, v. 70, n. 4, p. 813–836, 1992. Disponível em:< https://doi.org/10.2151/jmsj1965.70.4_813 >.

LARSON, R.; FARBER, B. Estatística aplicada. 2. ed. São Paulo: Pearson Education do Brasil, 2015.

LIN, J.; QIAN, T. A New Picture of the Global Impacts of El Nino-Southern Oscillation. Scientific Reports, v. 9, n. 1, p. 17543, 26 dez. 2019. Disponível em: < https://doi.org/10.1038/s41598-019-54090-5 >.

MANTUA, N. J. et al. A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production. Bulletin of the American Meteorological Society, v. 78, n. 6, p. 1069–1079, jun. 1997. Disponível em: < https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2 >.

MARENGO, J. A. Mudanças climáticas globais e regionais: Avaliação do clima atual do Brasil e projeções de cenários climáticos do futuro. Revista Brasileira de Meteorologia, 2001.

MARENGO, J. A. et al. A seca e a crise hídrica de 2014-2015 em São Paulo. Revista USP, n. 106, p. 31, 2 set. 2015. Disponível em: < https://doi.org/10.11606/issn.2316-9036.v0i106p31-44 >.

MARENGO, J. A.; VALVERDE, M. C. Caracterização do clima no Século XX e Cenário de Mudanças de clima para o Brasil no Século XXI usando os modelos do IPCC-AR4. Revista Multiciência, v. 8, 2007.

NAGHETTINI, M.; PINTO, E. Hidrologia Estatística. CPRM, v. 1, 2007. Disponível em: < https://doi.org/978-85-7499-023-1 >.

PEZZA, A. B.; AMBRIZZI, T. Variability of Southern Hemisphere Cyclone and Anticyclone Behavior: Further Analysis. Journal of Climate, v. 16, n. 7, p. 1075–1083, abr. 2003. Disponível em: < https://doi.org/10.1175/1520-0442(2003)016<1075:VOSHCA>2.0.CO;2 >.

PEZZI, L. P. et al. Ocean-atmosphere in situ observations at the Brazil-Malvinas Confluence region. Geophysical Research Letters, v. 32, n. 22, p. n/a-n/a, nov. 2005. Disponível em: < https://doi.org/10.1029/2005GL023866 >.

ROSA, E. B. Desempenho de um método automático de detecção de episódios de ZCAS [dissertação]. 2017, p. 218, 2017.

SILVA, J. P. R.; REBOITA, M. S.; ESCOBAR, G. C. J. Caracterização da Zona de Convergência do Atlântico Sul em Campos Atmosféricos Recentes. Revista Brasileira de Climatologia, v. 25, n. 2237–8642, 9 set. 2019. Disponível em: < https://doi.org/10.5380/abclima.v25i0.64101 >.

SILVA, M. E. S. et al. South America Climate During the 1970–2001 Pacific Decadal Oscillation Phases Based on Different Reanalysis Datasets. Frontiers in Earth Science, v. 7, p. 19, 2020. Disponível em: < https://doi.org/10.3389/feart.2019.00359 >.

SILVA, M. E. S.; SILVA, C. B. Variabilidade Climática – Processos Físicos e Dinâmicos nos Oceanos e Atmosfera. Geography Department, University of Sao Paulo, p. 372–406, 2012. Disponível em: < https://doi.org/10.7154/RDG.2012.0112.0016 >.

Published

2022-10-18

Issue

Section

Artigos

How to Cite

Verdan, I., & Silva, M. E. S. (2022). South Atlantic Convergence Zone variability in relation to ENSO events from 2000 to 2021. Revista Do Departamento De Geografia, 42, e193110 . https://doi.org/10.11606/eISSN.2236-2878.rdg.2022.193110